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I. Introduction 

Licensing as a mechanism for university-industry technology transfer has increased dramatically 

in the last few decades. Since the early 1990s, this growth in the US has been tracked by annual surveys 

of the Association of University Technology Managers (AUTM). Their data show that not only have 

many universities recently established Technology Transfer Offices (TTO), but existing offices have ex-

panded their patent licensing activities. Almost 50% of existing offices in the US were started after 1990. 

For the 109 US non-profit institutions responding to the AUTM survey in both 1996 and 2004, the num-

ber of inventions disclosed by faculty increased from an average of 66.9 per institution to 115.4 (a growth 

of 72.5%).1 New patent applications filed increased from an average of 22.8 per institution to an average 

of 73.4 per institution (a growth of 231%). The number of license and option agreements executed rose 

71.6% from an average of 18.7 to an average of 32.1. Along with this growth in disclosures, patents and 

licenses there has been substantial growth in income. Sixty-eight institutions reported income in both 

years; their income net of royalties paid to other institutions and net of legal fees rose 40.6% in real terms 

from an average of $4.61mil to $6.49mil.2  

While many view this growth as evidence of the increasing role of universities in the national in-

novation system, others view it with skepticism, arguing that such commercial activity may come at the 

expense of the greater university mission of producing basic knowledge. In this paper, we examine one of 

the central issues in this debate — the extent to which faculty involvement in licensing compromises ba-

sic research. Proponents of licensing argue that without the financial incentives associated with licensing, 

neither faculty nor companies would undertake the development needed for effective technology transfer. 

However, critics claim that publication would be sufficient for transfer, and more importantly, that poten-

tial financial returns from licensing may have diverted faculty from more basic to applied research.  

We consider this question at a time when policy makers in the US are increasingly concerned 

about the health of the research environment for basic research. Universities produce the bulk of basic 

research, and since 2002 basic research conducted by universities has leveled off while their applied re-

search is estimated to be growing (National Science Board 2008). As a result, the National Research 

Council has called for increased funding for basic research, while at the same time announcing a need for 

actions by industry, the academic sector, and professional organizations to encourage greater intellectual 

exchange between industry and academic (National Research Council 2008). This echoes the complex 

nature of the issues involved in our research question.  

                                                 
1 An invention disclosure is the formal document filed with the TTO by a faculty member when the faculty member 
believes she has an invention with commercial potential. 
2 This includes sponsored research funds tied to licenses. 
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In this paper, we exploit unique data on the research profile and disclosure activity of science and 

engineering faculty at 11 major US universities over a period of 17 years to examine the impact of faculty 

engagement in licensing activity on the nature of their research. Our data include faculty who never dis-

closed inventions as well as those who did, which allows us to examine the likelihood that faculty mem-

bers disclose inventions as a function of inputs and outputs of their research efforts, as well as other fac-

tors such as major program area, gender, age, and tenure. We take disclosure as our measure of faculty 

interest in commercial activity since it reflects only the faculty member’s opinion that she has an inven-

tion with commercial potential. This is in contrast to patents which are also subject to the novelty and use-

fulness of the invention and unlike licenses which are subject to a firm’s opinion of the commercial po-

tential of an invention. Thus disclosure represents a necessary but not sufficient condition for licensing to 

have diverted faculty from basic research.  

 To explore whether commercial activity has influenced research we consider econometric models 

of the amounts of federal and industry research funding as a function of a set of regressors of individual 

characteristics including whether the faculty member disclosed an invention in the prior year. We also 

consider econometric models of publications, citations to those publications, “expected citations” and the 

number of “basic” publications.  

 By examining disclosures, as well as government and industry funding, we differ from prior stud-

ies that examine faculty patenting and its relation to research. An exception is Thursby and Thursby 

(2002) which constructs an intermediate input model of university licensing in which research funding is 

an input to invention disclosures, invention disclosures are inputs to patent applications, and both disclo-

sures and patent applications are inputs to licenses executed. The model is estimated using data from 65 

US universities for the period 1994-1998. An important result is that the primary factor behind the growth 

in licensing during that period was university administration decisions to patent, rather than the business 

climate or a change in the nature of faculty disclosure activity. A drawback of that paper is that it relies on 

university level data, rather than the individual level data used in this paper.3 

Our analysis complements studies that examine individual level data on inventor patenting and 

the implications for research (see, for example, Azouley et al. (2006, 2007), Breschi et al. (2005), Jensen 

et al. (2008), Deng et al. (2006)).  

 

II. Data 

Our data are the research, demographic and disclosure profile of all faculty scientists and engi-

neers at 11 major universities: Georgia Institute of Technology, California Institute of Technology, Uni-

                                                 
3 In Thursby and Thursby (2005, 2007a, 2007b) we consider individual data but the analysis is more limited in that it 
does not include funding data and deals only with a subset of the universities we consider here. 
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versity of Utah, Harvard University, Stanford University, Cornell University, Massachusetts Institute of 

Technology, University of Pennsylvania, Purdue University, Texas A&M University and University of 

Wisconsin - Madison. This choice of universities is not random. Each is a major research university and 

each has faculty actively engaged in licensing. As shown in Table 1, all of the universities in the sample 

compare favorably to the top 50 universities in terms of total research expenditures, licenses executed, 

and invention disclosures as reported in the 2004 AUTM Survey. 

Faculty included in this study are those on the list of science and engineering faculty in PhD 

granting departments provided in the 1995 National Research Council (NRC) report. Faculty not listed in 

PhD granting departments are excluded; importantly, this does not include medical school faculty unless 

they also hold appointments in PhD granting departments. Departments are excluded if one could not rea-

sonably expect disclosure activity (for example, we exclude astronomy).  

The technology transfer office (TTO) of each university supplied the names of disclosing faculty 

as well as dates of disclosure. Four universities provided disclosure information for 1983 to 1999, and the 

others provided information from 1983 to 1996 or from 1987 to 1999.4  Matching these files with the 

NRC list provides a sample composed of multiple years of disclosure activity for faculty of the 11 univer-

sities in 1993. Not only are faculty in non-PhD granting departments excluded but we also must exclude 

faculty who join the university after 1993 or who left the university before 1993. For years other than 

1993 it was necessary to check to ensure that we include faculty only when they are at their university of 

record in 1993. In the sample are 4,988 faculty and 60,905 observations where an observation consists of 

a person in some year.  

As noted above, an invention disclosure, rather than a license, is our measure of faculty interest in 

licensing. While disclosures and licenses are not independent, the former is more representative of faculty 

interest since the latter is influenced by expectations of the TTO and a firm as to commercial potential. A 

license disclosure indicates that an inventor has a research result she believes has commercial potential 

and that she is interested in commercializing. While all universities in the sample require their employees 

file such disclosures, this is hardly enforceable. Faculty may not disclose for a variety of reasons. In some 

cases they may not realize the commercial potential of their ideas, but often faculty do not disclose inven-

tions because they are unwilling to risk delaying publication during the patent and license process.5 Fac-

ulty who specialize in basic research may not disclose because they are unwilling to spend time on the 

                                                 
4 We started with 1983 so as to be well past the date of passage of the Bayh-Dole Act of 1980. Universities supplied 
us with data as far back as disclosure information could easily be retrieved. The 1996 end was for Purdue Univer-
sity. Purdue was the basis for our pilot study in this project and that pilot was initiated in 1997, hence we only col-
lected Purdue data through 1996. 
5 Half of the firms in an industry survey noted that they include delay of publication clauses in at least 90% of their 
university contracts (Thursby and Thursby 2008). The average delay is nearly 4 months, with some firms requiring 
as much as a year's delay. 
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applied research and development that is often needed for businesses to be interested in licensing univer-

sity inventions (Thursby and Thursby 2002 and Jensen et al. 2003). While a disclosure signals a willing-

ness to be involved with licensing, it need not indicate that the research was motivated by the desire to 

license. Curiosity driven research can often lead to commercially applicable results. In their interviews 

with MIT mechanical engineering faculty Agrawal and Henderson (2002) found that most conducted re-

search with the primary goal of publishing.  

We define three disclosure variables. The first is whether a faculty member discloses in a given 

year. Discit is equal to one if faculty member i made at least one disclosure in year t. This is a measure of 

interest in commercialization in year t as measured by disclosure activity in year t. It is our primary meas-

ure of commercial interest. Hereafter we use the term “disclosure observation” as one where Discit = 1. 

The second is an indicator of whether there was a disclosure in the prior year. LagDiscit = 1 if faculty 

member i disclosed in year t-1. The final measure is the number of disclosures. NumDiscit is the number 

of disclosures made by faculty member i in year t. Note that Discit = 1 if NumDiscit > 0. 

We supplement the disclosure data with data from Thomson ISI on the total number of publica-

tions by year for each of the faculty as well as the total number of citations those publications receive 

through 2003. PubCountit is the number of publications of faculty member i in year t. Citesit is the number 

of citations to those publications received through 2003; the citation data is truncated. The citation infor-

mation not only provides information about the importance of the research conducted in year t, but it also 

provides information on how fundamental is the work to the extent that fundamental research is likely to 

be cited more often than is applied research. In the ISI data are the average number of citations received 

by articles published in the same journal and in the same year; there is also truncation in the average cita-

tion data. ExpCitesit is the average number of citations received by articles published in the same journals 

and for year t as PubCountit. Average citations can be considered as the expected number of citations for 

each of the faculty publications. We consider it to be a measure of the nature of the faculty member’s re-

search in the sense that more fundamental publications are expected to receive more citations. Thus, jour-

nals with more citations can be considered to be journals that specialize in more fundamental research. 

FirstAuthorit is the count of the number of times faculty member i is first author on an article in year t; 

this is a subset of PubCountit. FirstAuthor is considered since it is generally the case that the first author 

has contributed at least as much as others to the publication. The average number of publications per year 

for our sample is 3.62 whereas the average number of articles where they are the first author is 1.02. This 

variable should also be affected by the size of the inventor’s lab. Inventors in larger labs will, in general, 

generate more publications per year, but they will be first author less often. Each of these publication 

measures are converted to logarithms. 
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An additional measure of the nature of research is a mapping of each journal publication into 

Narin et al.’s (1976) classification of the ‘basicness’ of journals. This classification characterizes journals 

by their influence on other research and it has been updated regularly. They argue that basic journals are 

cited more by applied journals than vice versa, so that journals are considered to be basic if they tend to 

be heavily cited by other journals. For example, if journal A is heavily cited by journal B, but B does not 

tend to be cited by A, then A is said to be a more basic journal than is B. Advantages of the Narin classi-

fication are not only its measure of influence, but also ease of extending the measure to a large number of 

journals and articles. The ratings are on a 5-point scale, and we classify as basic only publications in the 

top basic category, which covers about 62% of all ranked journal publications. About a third of all publi-

cations could be rated, but we found no systematic change over time in the number of publications that 

could be rated. In a regression of the fraction of rated publications (where we drop observations with no 

publications, rated or otherwise) on a set of indicator variables for the year of the observation, we found 

an R2 of only .0016 and very few significance differences in the coefficients of early versus later years. 

Unfortunately, not all journals in our data are rated and some faculty do not publish in some years. If none 

of a professor’s publications are rated in some year (to include years in which they do not publish) then 

those observations are dropped. This leaves 14,401 person/year observations for which we can measure 

how basic is the research according to this measure. Basicit is the number of basic publications made by 

faculty member i in year t. We calculate this figure by first finding the fraction of rated publications that 

are in the most basic category of the Narin classification. It is assumed that this same fraction of basic 

work extends to all of the researcher’s publications in that year. That is, Basicit = fit*PubCountit where fit 

is the fraction of faculty member i’s rated publications in year t that are basic.   

For eight of the universities (Purdue, MIT, Stanford, Wisconsin, Georgia Tech, Cornell, Pennsyl-

vania and Texas A&M) the office of sponsored research provided information on sponsored research 

funds from federal and industry sources. Most of our analysis is restricted to these 8 universities; the 

number of faculty is 4,240. Only one of the universities (MIT) was able to provide annual expenditure 

data. For the remaining we have the names of the principal and co-principal investigators as well as the 

start and end dates of each award. We assume that all funds are expensed equally across time and investi-

gator. That is, if an award started on September 1 of some year and ended on August 31 of the following 

year and if there are two investigators, then we allocate a sixth of the funding to each of the investigators 

in the first year and two sixths to each investigator in the second year. Funding is important to under-

standing disclosure behavior and its effects so that our econometric analysis will consider only the eight 

universities for which we have funding data. FedFndit and IndFndit are the amounts of federal and indus-

try sponsored research funds received by faculty member i in year t. In the econometric analysis we 

measure these in logarithms. 
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Information on annual faculty activity is combined with information on age (Ageit) and year that 

the PhD was awarded (PhDYeari) in the event there are PhD “cohort” effects. In many cases birth dates 

are unavailable; in such cases we assume birth dates are 21 years prior to year of undergraduate degree, 

or, if date of undergraduate degree is not available we assume birth year was 29 years prior to date of PhD 

Whenever we include Ageit we also include its square (AgeSqit). Whether the researcher has tenure is ex-

pected to be important. Unfortunately, we do not know for certain if or when a faculty member obtains 

tenure, but we do know the start date at their university. In the event that there “tenure clock” started 

when they were first employed at this university we can measure tenure as starting in the 7th year of their 

employment. Tenureit = 1 indicates that the faculty member i has tenure in year t according to our algo-

rithm. Our measure of tenure provides an undercount. 

The academic quality of i’s department, DeptQuali, is taken from the National Research Coun-

cil’s (1995) survey. Departments are rated on a 6-point scale from 0 to 5 where 5 is an indication of a dis-

tinguished department. The measure is included to possibly reflect faculty quality that is not reflected in 

individual specific research output measures such as numbers of publications; for example, faculty in high 

quality departments have undergone a more rigorous vetting process in being hired and face more rigor-

ous tenure standards. However, research in high quality departments might have different characteristics 

than that in other departments – for example, it might be more theoretical and fundamental. If that is the 

case then the effect of department quality is unclear.  

In each of our regressions we include indicator variables for the major program field of the fac-

ulty member. We define Engi = 1 if the inventor is in an engineering department and PhyScii =1 if the in-

ventor is in a physical science department; the excluded field is biological sciences. University indicator 

variables are included. Universities differ in their license policy with respect to such things as inventor 

share of income or outreach programs to encourage disclosures. To account for that heterogeneity (much 

of which we cannot observe) we include university indicator variables. Finally, we include year indicator 

variables to capture any annual effects not accounted for by our time varying regressors. The year effects 

will also mitigate to some extent the fact that Citesit and ExpCitesit are truncated. 

 

III. Summary Statistics 

 In Table 2 are summary statistics. Before turning to our econometric analysis we present some 

simple tabulations of the research output and input variables. 

III.1 Disclosures 

For each person in our sample, it is known whether she disclosed in each year that she was on the 

faculty, and if so how many times she disclosed in that year. The sample has 5,133 person/year observa-

tions (this is 8.4% of the sample) in which there is at least one invention disclosure (that is, Discit = 1). 
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Taking into account multiple disclosures in a year the total number of disclosures is 9,240; that is, this is 

the sum of NumDiscit across all i and t. In light of the attention that has been given to university licensing 

and the fact that about one in ten of these faculty are disclosing late in the sample period (see below), the 

number of faculty who disclose is low. For the 4,988 faculty in the sample 63.5% of them never disclosed 

an invention and another 14.6% disclosed in only a single year. Only 109 (2.2%) disclosed in 8 or more 

of the years they were in the sample (not shown in the table). When a faculty member discloses in some 

year it is typically a single event. For 3,304 of the 5,133 disclosure years (64.4%) there is only a single 

disclosure. In 1,040 of the disclosure years (20.3%) the faculty member has disclosed twice (that is, Num-

Discit = 2) and for the remaining 84.7% there are more than two disclosures. Forty-five of the disclosure 

years are cases of 10 or more disclosures by a faculty member in a single year. The distribution of Discit 

also varies substantially by university from a low of 4.41% over all years to a high of 17.7%.  

In Table 3 are observations by year as well as the percent of those observations that are disclosure 

observations (that is, observations on a faculty member who has disclosed at least once in a given year) 

and the average number of disclosures per faculty member. The percent of disclosure observations rises 

from 2.7% of the faculty in 1983 to around 10% to 11% by the mid-nineties where it appears to have lev-

eled off. The average number of disclosures per faculty member per year rises from about 0.04 to about 

0.25. This trend in disclosure activity is consistent with our earlier observations about the growth in uni-

versity license activity. In Figure 1 are the disclosure year observations and the average number of disclo-

sures mapped as a fraction of their value in 1983. The upward trend in the average number of disclosures 

is more marked than the rise in the percent of faculty who disclose in each year further emphasizing that 

disclosure activity is concentrated in a minority of the faculty.  

III.2 Federal and Industry Funding 

 As noted, we have for eight of the universities in our sample both federal and industry funding by 

researcher by year. This subsample includes 4,240 researchers and 51,951 person/year observations. 

Thirty-two percent in this group have no federal money in any years in which they are in the sample and 

almost 63% never received industry funding. For all person/years 54.8% are observations for which there 

is nether source of funding. Both sources of funds are observed in 9.4% of the sample. 

 Graphed in Figure 2 are annual average funding levels as a fraction of their average levels in 

1983. Disclosure activity increased substantially over the period of our sample, and if this has come at the 

expense of faculty research funding, then it does not show up in the raw data. Relative to 1983, federal 

funding has increased almost six fold. The increase in industry funding (which could be a function of in-

creasing interest in commercialization) has been even greater though most of the increase had taken place 

by 1989. 

III.3 Publications and Citations 
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 The average number of publications by year is 3.84. Almost 31% of the person/year observations 

are ones in which there are no publications and for another 15.2% there is only a single publication. In 

only 11.2% of the sample are there 10 or more publications. The average value of Citesit is 120.5. This is 

substantially larger that the 101.4 average for ExpCitesit thus the faculty in this sample receive, on aver-

age, more citations to their work than do others who publish in the same journals and in the same year. 

The average number of citations per publication is 27.3 and 6.8% of those who publish in some year have 

no citations to their work. 

 Annual averages for publications, citations and expected citations in comparison to their values in 

1983 are in Figure 3. As was the case with funding the raw data appear not to show an effect from in-

creased commercialization. For each measure there is an increase from the 1983 averages. The largest 

increase occurs for publications. 

III.4 Basic Publications 

 Basic publications are determined according to Narin et al.’s (1976) classification. As noted 

above we drop any person/year observations for which there are no rated publications. This leaves 14,401 

observations. The average number of basic publications is 1.94 in 1983 and it rises slightly to 2.19 by 

1999 after dipping slightly in the mid 1980s. For the observations for which we have a basic measure the 

average number of publications rises from 6.3 in 1983 to 11.1 in 1999. In Figure 4 are graphed the annual 

averages of Basic as well as the comparable set of publications and their citations as fractions of their 

1983 figures. The amount of basic research according to this measure has remained fairly steady as has 

the number of citations while the average count of publications has risen substantially. 

 

IV. Econometric Analyses 

 In the above we consider changes in research inputs and outputs over time for the raw data. With 

the possible exception of the ratio of basic publications to total publications the raw data do not suggest 

that an increase in disclosure activity has been accompanied by a noticeable change in research. Those 

comparisons do not control for any other factors that might affect research inputs and outputs. In this sec-

tion we consider econometric models of disclosures, funding, publications, citations, expected citations 

and basic publications. The level of funding appears in each of the regressions so that we can only con-

sider the eight universities for which we have that information.  

IV.1 Dependent Variables 

In Table 4 is a matrix summary of the models we consider. In the first panel columns show the de-

pendent variables and rows show the regressors. In the second panel are our primary methods of estima-

tion. For ease of discussion we categorized the dependent variables as follows.  
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• Disclosure measures 
o Disc 

o NumDisc 

• Funding 
o FedFnd 

o IndFnd 

• Research outputs 
o PubCount 

o Cites 

• Research type 
o ExpCites 

o Basic 

 

Research type refers to measures of how fundamental is the research. More fundamental research is ex-

pected to be published in journals that are cited more often. Both ExpCites and Basic are citation based 

measures of how basic is the research. Note that Cites is both an output and a measure of research type. 

The funding, research outputs and research type variables are all converted to logarithms. 

IV.2 Independent Variables 

In all of our regressions disclosing in the prior year is included. LagDisc is our regressor of great-

est interest. If disclosure activity signals a change in research direction or interests it is likely that we will 

observe subsequent changes in the various measures of research. For example, if disclosures indicate a 

change in research then it should have an effect on current funding and current funding is based on re-

search applications. Our priors are that a change in research toward a more commercial focus should lead 

to increased industry funding and decreased federal funding. Likewise, a change toward more applied 

research should show up through fewer citations and publications in journals that are less often cited and 

that are less basic in orientation. That is, LagDisc should have a negative coefficient in the equations for 

Cites, ExpCites and Basic. The effect on PubCount is unclear. 

Federal and industry funding is included as a regressor in each equation either as the current year 

levels or the levels from the prior year. The funding regressions explain both the amount of federal fund-

ing FedFndit and industry funding IndFndit received by faculty member i in year t. It is very likely that 

federal and industry sponsored research are simultaneously determined (see Jensen et al. (2008)). Thus, in 

the equation explaining federal funding we include the current level of industrial funding. Likewise, in the 

industry funding equation we include the current level of federal funding. Instrumental variables estima-

tion is used and the instrument for FedFnd is LagFedFnd. Similarly, the instrument for IndFnd is 

LagIndFnd. Both instruments are highly correlated with the endogenous regressor (0.89 for federal and 

lagged federal funding and 0.82 for industry and lagged industry funding). Lagged federal spending is 

included in the federal funding equation and lagged industry funding is included in the industry sponsored 

research funding equation since many of the research awards are multi-year awards (in addition there are 
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other possible sources of inertia in funding). Their inclusion should also pick up any unobservable indi-

vidual specific factors that are not captured by the publication data, major program area, etc. For example, 

the focus of a researcher’s research interests should influence federal funding depending according to 

whether those interests are in line with federal initiatives. In each of the other regressions we include 

LagFedFnd and LagIndFnd.  

PubCount is included in the disclosure equations as a measure of the current research activity of 

the faculty. It is also included in the Cites, ExpCites and Basic equations. Cites and ExpCites are counts of 

citations for this year’s publications and Basic is the number of publications which are basic. The disclo-

sure measures are functions not only of current research activity as measured by PubCount but also by the 

current year’s citations and expected citations. Cites is a measure of the importance of the research, but it 

is also an indication of how fundamental is the research; hence ExpCites is also included. If one is first 

author more often then  Inventors in larger labs will, in general, generate more publications per year, but 

they will be first author less often.  

LagPubCount, LagFirstAuthor, LagCites and LagExpCites are each in the funding equation since 

current funding is based on past applications and those applications are based on research performance in 

the recent past. We include the number of times the researcher is first author on papers for two reasons. 

The more often one is first author then we can expect that the researcher has fewer co-authors. This could 

follow from being in a small lab so LagFirstAuthor can be argued to control for lab size 

There are four life cycle variables – Age, AgeSq, PhDYear and Tenure. Each is included in all 

equations. Thursby et al. (2007) provide theoretical evidence that licensing activity is associated with age 

and that the age effects are non-linear. Levin and Stephan (1991) and Thursby et al. (2007) offer evidence 

of life cycle effects in research output. Thus, we include both the age of the inventor at the time of the 

disclosure Age and the square of age AgeSq. PhDYear is included to pick up any PhD “cohort” effects not 

captured by age. Clearly, age and year of PhD are highly correlated (the simple correlation is –0.87), but 

there may be independent information in the year of PhD that is not captured by age. For example, atti-

tudes toward commercial activity might have changed over time and the year of the PhD might capture 

such changes.6 Stephan et al. (2002) find that faculty who are not tenured are more likely to patent. Our 

measure of interest in licensing is clearly much broader than their measure, nonetheless there is expected 

to be a relation between tenure and disclosure (see also Thursby et al. (2007)). 

Gender is included as a regressor in all equations. Thursby and Thursby (2005) find significant 

gender differences in faculty propensity to engage in licensing activities and Azoulay et al. (2007) find 

significant gender effects on faculty patent activity.   

                                                 
6 An industry licensing executive claimed to one of the authors that more recent vintage PhD’s in university biologi-
cal science departments were more accepting of licensing to industry. 
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Indicator variables Eng and PhySci are included to capture field effects. We also include the de-

partment quality score DeptQual. Universities differ in license policies via different as inventor shares of 

income or outreach programs to encourage disclosures. To account for that heterogeneity (much of which 

we cannot observe) we include the university indicator variables. Finally, we include year indicators to 

capture annual effects not accounted for by our time varying regressors. The year effects will also miti-

gate the truncation in Cites and ExpCites. We do not present the detailed results on the university and year 

indicator variables which show in all cases significant year and university heterogeneity.  

IV.3 Estimators 

We use a logit probability model for Disc. A negative binomial counts model was initially at-

tempted NumDisc but the process did not converge. In its place we use a negative binomial counts model 

where the count consists only of zero, one, two, and three or more disclosures in a year.  

All other models are estimated using a Tobit estimator given the very large numbers of zero ob-

servations. As noted above, instrumental variables estimation is used for the funding dependent variables 

since FedFnd is on the right hand side of the industrial funding equation and IndFnd is on the right hand 

side of the federal funding equation. The instrument for FedFnd is LagFedFnd. Similarly, the instrument 

for IndFndit is LagIndFndit. Both instruments are highly correlated with the endogenous regressor (0.89 

for federal and lagged federal funding and 0.82 for industry and lagged industry funding). We do not use 

a counts model is not used since the number of publications is often large. For example, the average num-

ber of publications for person/years in which there is a publication is 5.34 and the maximum is 130. In 

addition we encountered convergence problems.  

There is very likely measurement error in FedFnd and IndFnd since we were forced to assume 

that all principal investigators and co-principal investigators expensed awards equally and that award 

were expensed equally over time. As a robustness check we defined an indicator variable DumFedit which 

is equal to 1 if researcher i received funding in year t. Similarly, we defined DumIndit to be an indicator 

variable for the presence of industry funding. Instrumental variable probit models were used with lagged 

indicator variables as instruments. The industry funding model did not converge. Results when DumFed 

is the dependent variable are quite similar to the Tobit results so we do not present the detailed results.  

Ten of the person/year observations have federal funding of more than $6Mil with two observa-

tions in excess of $30Mil. The effects of these outliers are mitigated through our use of logarithms. How-

ever, we considered these regressions after discarding the 10 largest federal funding observations. Results 

are almost identical to what is reported in Table 6 so we do not report the details. 

It was noted earlier that citations and expected citations are truncated after 2003. Year indicator 

variables will pick up some of the truncation bias. As an alternative we dropped the last four years of data 
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and reran both the citation and the expected citation models on the remaining 31,394 observations. The 

results are very similar and details are not presented. 

Table 4 provides a summary of the regressors used to explain the levels of the eight dependent 

variables as well as the estimation strategies. 

IV.4 Disclosure Equation Results 

The logit results for disclosures in terms of the odds ratios are in the first panel of Table 5. Lag-

FedFndit, LagIndFndit, PubCountit, Citesit and ExpCitesit are converted to logarithms. There are 47,279 

observations and all coefficients are significantly different from zero at least at a 5% level. The negative 

binomial results (incident rate ratios) are in the second panel of Table 5 and the results very close to the 

logit results with the exception that AgeSq is no longer significant and tenure is now significant. The 

pseudo R2 is also smaller. We concentrate on the logit results since our main interest is in whether or not 

the faculty member has shown an interest in licensing in a given year. 

Consider the four variables associated with stages of the life cycle: Age, AgeSq, Tenure and 

PhDYear. Age has a negative effect on disclosure but the effect of AgeSq is positive. The marginal effect 

of another year is declining with age though the net effect of another year is always negative.  More re-

cent PhD’s (that is, the larger is PhdYear) are less likely to disclose. For example, a 40 year old who re-

ceived his/her degree in 1980 is less likely to disclose than a 40 year old who received his degree in 1970. 

As time passes, a faculty member is less likely to disclose because she is getting older but this effect is 

mitigated by the fact that the PhD was further in the past. The final time variable, Tenure, is a measure of 

where the faculty member is with respect to their professional career. Those with tenure are less likely to 

disclose but this is significant only in the NumDisc regression.  

Funding is positively associated with disclosure. While the positive effect of industrial funding is 

expected, the effect of federal funding is not clear a priori. Federal funding is generally thought to be 

aimed more toward more fundamental work and fundamental work is generally less readily for commer-

cialization. This latter point is supported by the fact that LagIndFnd is larger than LagFedFnd and these 

are significantly different (p-value = 0.000).  

There is a substantial difference in the disclosure rates of men and women. Men are about 35% 

more likely to disclose than females, all else equal. Holding constant the research output of the faculty 

member, those in higher quality departments are less likely to disclose. This result may be due to greater 

internal rewards to commercial activity in lower quality departments. Jensen et al. (2003) provide evi-

dence that higher quality universities (as measured by the NRC survey rankings of PhD granting depart-

ments) provide lower royalty shares for licensed inventions.   

The omitted major program area is biological sciences. Those in engineering are most likely to 

disclose, followed by faculty in the biological sciences. Physical science faculty are least likely to dis-
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close. Faculty at the eight universities have very different probabilities of disclosure (results are not 

shown). Faculty in the university that is most likely to have faculty disclose are about 2.7 times as likely 

to disclose as are faculty university in the university that are least likely to disclose.  

With respect to year effects the raw data show an almost 4.5 fold increase in disclosure activity 

from 1983 until the late 1990’s. In our logit regression this effect continues to hold (detailed results not 

shown in the table). In other words, the increase in disclosure activity over time has been independent of 

changes in faculty profiles with respect to research productivity, funding and life cycle effects.  

IV.5 Funding, Output and Type Results 

Results for the remaining dependent variables are in Table 6. A summary of results are in Table 7 

where “+” and “-“ denote significant positive and negative results. Insignificant results are blank.  

IV.5.a Lagged Disclosure Regressor 

The main focus of this paper is an examination of possible effects of an interest in commercializa-

tion as evidenced by the act of disclosing an invention in some year. LagDiscit is equal to 1 if researcher i 

disclosed an invention in year t-1; it is zero otherwise. We are looking at whether we can find effects on 

year t funding, research outputs and research type for researcher i from an interest in commercialization 

the prior year. In each of the six regressions we find a significant effect of lagged disclosures. In both the 

federal and industry funding equations higher levels of funding occur in the years following disclosures. 

If disclosure indicates a change in orientation toward less fundamental research then we would expect the 

positive relationship between lagged disclosures and industry funding. However, we would expect a nega-

tive relationship with federal funding. Higher publication counts are also observed following a disclosure. 

However, those publications receive fewer citations and are published in journals that on average receive 

fewer citations and in journals that are rated as being less basic. The effects on citations, expected cita-

tions and fewer basic publications are consistent with a change in research orientation.   

IV.5.b Industry and Federal Funding Regressors 

Current industry funding and lagged federal funding are included as regressors in the federal 

funding equation. Likewise, current federal funding and lagged industry funding are included in the in-

dustry funding equation. Results are in the first two panels of Table 6. In both regressions the other source 

of funds is positively and significantly different from zero, though the elasticities are very small. That is, 

IndFnd is positive and significant in the federal funding equation and FedFnd is positive and significant 

in the industrial funding equation suggesting that federal and industrial funding are complements rather 

than substitutes. There does not appear to be crowding out of either type of funding by the other. The co-

efficient of industrial funding in the federal equation is slightly larger that the coefficient of federal fund-

ing in the industrial equation. In a study of funding Jensen et al. (2007) also found that different sources 

of funding were complements. However, they found that federal funding had a larger effect on industrial 
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funding that industrial funding had on federal funding. Their study differs from ours in that they only 

consider faculty in years in which an ultimately successful application for a patent had been made. Past 

research funding is significantly and positively related to current funding though the coefficient (elastic-

ity) of LagFedFnd in the federal funding equation is only 0.086 while the coefficient of LagIndFnd is 

0.674. Thus there is inertia in funding. The larger elasticity of LagIndFnd most likely follows from the 

fact that most industry funding values (about 86%) are zero. 

Lagged federal and industry funding have the expected results in the PubCount, Cites, ExpCites 

and Basic regressions. More of each type of funding increases publications. Increased federal funding, 

which is tied to fundamental research, increases citations, expected citations and basic publications. In-

creased industrial funding, on the other hand, reduces each of these. 

IV.5.b Publications, Citations, Expected Citations and First Author in the Funding Regressions 

 Not surprisingly, more publications, since they indicate greater research productivity, are associ-

ated with higher levels of both industry and federal funding. More citations and expected citations, hold-

ing constant publications, should lead to greater federal funding and lower industry funding to the extent 

that more citations and expected citations are indicative of more fundamental research. To the extent that 

they measure greater productivity they should be associated with greater levels of both types of funding. 

LagCites has a positive coefficient in both the federal and the industry funding equations but it is signifi-

cant only in the federal equation. LagExpCites is positive but not significant in the federal equation and 

negative and significant in the industry equation. LagFirstAuthor is expected to reflect the size of the re-

searcher’s lab since researchers in large labs are expected to have more publications but to be first author 

less often. The results in both funding equations supports this argument since the more often one is a first 

author, holding total publications constant,, the less federal and industry funding the researcher receives.   

IV.5.c Life Cycle Regressors 

 Our prior is that there should be a positive relation between age and funding but that the effect 

should decline as the faculty member ages so that an additional year initially has a positive effect but the 

marginal effect eventually becomes negative. Older researchers at major research universities such as 

those in our sample are expected to have more established and substantial research records. In the early 

years when those records are being established we should expect another year of age to increase the avail-

ability of sponsored research funding. However, to the extent that research productivity declines over the 

life cycle (see, for example, Levin and Stephan (1991), Thursby et al. (2007) and our results below), an-

other year should eventually begin to have a negative partial effect. Thus our expectation is that Age 

should be positive while AgeSq should be negative. This is the case for both funding equations (Age and 

AgeSq are jointly different from zero in both equations at the 1% level). The marginal effect of an addi-

tional year (the coefficient of Age plus twice the coefficient of AgeSq times the age of the faculty mem-
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ber) is negative beginning with age 41 in the federal funding equation and age 52 in the industry funding 

equation. The earlier age for the maximum level of federal funding is possibly due to the more fundamen-

tal purpose of federal funding and that younger researchers are more oriented towards fundamental re-

search. The implied overall decline in federal funding, all else equal, between the ages of 40 (when fed-

eral funding is a maximum) and 60 is about 26%; this is significantly different from zero at a 1% level. 

The implied overall decline in industry funding between the ages of 51 (when industry funding is a 

maximum) and 60 is about 1.3%; this is not significantly different from zero at conventional levels. 

Publications increase at a decreasing rate with age. This effect was expected. A similar result is 

reported by Levin and Stephan (1994) based on both theoretical and empirical models. Thursby et al. 

(2007) report a similar theoretical result. The effects of Age and AgeSq are similar in the citations, ex-

pected citations and basic publications regressions. Age has a negative effect but AgeSq is positive. 

 More recent PhD’s receive less federal funding but there is no statistically significant effect on 

industry funding. Newer PhD’s have fewer publications, expected citations and basic publications. Tenure 

has a negative effect on federal funding (significant at the 5% level) but it is not significant in the industry 

funding equation. Tenure has not effect on the number of publications but it does have a negative effect 

on citations, expected citations and basic publications. Tenure appears to be associated with a change in 

orientation to less fundamental research. 

Males receive significantly more of both types of funding; the coefficient is significant at the 5% 

level in the federal equation but it is only significant at the 10% level in the industry equation. Men also 

have larger numbers of publications, but there is no other difference in research profile between men and 

women.  

When department quality is significant it has a negative effect. We had expected department qual-

ity to pick up measures of individual research output that is not captured by other regressors, hence this 

negative effect is puzzling.  
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