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Abstract

Rationality places strong restrictions on individual consumer behavior. This paper is

concerned with assessing the validity of the integrability constraints imposed by standard

utility maximization, arising in classical consumer demand analysis. More specifically,

we characterize the testable implications of negative semidefiniteness and symmetry of

the Slutsky matrix across a heterogeneous population without assuming anything on the

functional form of individual preferences. In the same spirit, homogeneity of degree zero

is being considered. Our approach employs nonseparable models and is centered around a

conditional independence assumption, which is sufficiently general to allow for endogenous

regressors. It is the only substantial assumption a researcher has to specify in this model.

Most of the results follow from this assumption under regularity conditions. Finally, we

apply all concepts to British household data, and show that rationality is an acceptable

description for very large parts of the population.

Keywords: Nonparametric, Integrability, Testing Rationality, Nonseparable Models, De-

mand, Nonparametric IV.

1 Introduction

Economic theory yields strong implications for the actual behavior of individuals. In the stan-

dard utility maximization model for instance, economic theory places significant restrictions
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on individual responses to changes in prices and wealth, the so-called integrability constraints.

However, when we want to evaluate the validity of the integrability conditions using real data,

we face the following problem: In a typical consumer data set we observe individuals only

under one or a very limited number of different price-wealth combinations, often only once.

Consequently, the observations of “comparable” individuals have to be taken into considera-

tion. But this conflicts with the important notion of unobserved heterogeneity, a notion that is

supported by the widespread empirical finding that individuals with the same covariates vary

dramatically in their actual consumption behavior. Thus, general and unrestrictive models for

handling unobserved heterogeneity are essential for testing integrability.

Endogeneity is another major source of concern in applied work. In consumer demand, total

expenditure is taken as income concept, which is justified by assuming intertemporal separa-

bility of preferences. Since the categories of goods considered are broad (e.g., food) and they

frequently consitute a large part of total expenditure, the latter is believed to be endogenous.

As instrument, the demand literature usually employs labor income whose determinants are

thought to be exogenous to the unobserved preferences determining, say, food consumption.

Other endogeneities that could arise are in particular related to prices. In empirical industrial

organization for instance, prices for indivdiual goods are thought to be set by the firm targeting

(partially unobserved) characteristics of individual consumers. The arising endogeneities could

be tackled in exactly the same fashion as we propose in this paper. In our application, how-

ever, we consider broad aggregates of goods and we expect such effects to wash out. Moreover,

following the recent Microeconometric demand literature we consider atomic individuals that

act as price takers, and we control for time effects. Summarizing, we concentrate on total

expenditure endogeneity, but add that this approach could easily be extended.

Testing integrability constraints dates back at least to the early work of Stone (1954), and

has spurned the extensive research on (parametric) flexible functional forms demand systems

(e.g., the Translog, Jorgenson et al. (1982), and the Almost Ideal, Deaton and Muellbauer

(1980)). Nonparametric analysis of some derivative constraints was performed by Stoker (1989)

and Härdle, Hildenbrand and Jerison (1991), but none of these has its focus on modeling

unobserved heterogeneity. More closely related to our approach is Lewbel (2001) who analyzes

integrability constraints in a purely exogenous setting. In comparison to his work, we make

three contributions: First, we show how to handle endogeneity. Second, even restricted to

the exogenous case, some of our results (e.g., on negative semidefiniteness) are new and more

general. Third, we propose, discuss and implement nonparametric test statistics. An alternative

method for checking some integrability constraints is revealed preference analysis, see Blundell,

Browning and Crawford (2003), and references therein.

In this paper we extend the recent work on nonseparable models - in particular Imbens and
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Newey (2003) and Altonji and Matzkin (2005) who treat the estimation of average structural

derivatives when regressors are endogenous - to testing integrability conditions. Even though

our application comes from traditional consumer demand, most of the analysis is by no means

confined to this setup and could be applied to any standard utility maximization problem with

linear budget constraints. Moreover, the spirit of the analysis could be extended to cover, e.g.,

decisions under uncertainty or nonlinear budget constraints.

Central to this paper is a conditional independence assumption. This assumption will be

the only significant restriction we place on preference heterogeneity, and it explicitly allows for

endogenous regressors. The main contribution of this paper is the formal clarification of the

implications of this conditional independence assumption for testing integrability constraints

with data. Much of the second section will be specifically devoted to this issue: we devise very

general tests for Slutsky negative semidefiniteness and symmetry, as well as for homogeneity.

In the third section we apply these concepts to british FES data. The results are affirmative as

far as the validity of the integrability conditions are concerned and demonstrate the advantages

of our framework. A summary and an outlook conclude this paper, while the appendix contains

proofs, graphs and summary statistics. An overview of the econometric methods may be

obtained from a supplement that is available on the author’s webpage.

2 The Demand Behavior of a Heterogeneous Population

2.1 Structure of the Model and Assumptions

Our model of consumer demand in a heterogeneous population consists of several building

blocks. As it is common in consumer demand, we assume that - for a fixed preference ordering

- there is a causal relationship between budget shares, a [0, 1] valued random L-vector denoted

by W , and regressors of economic importance, namely log prices P and log total expenditure

Y , real valued random vectors of length L and 1, respectively. Let X = (P ′, Y )′ ∈ RL+1.

To capture the notion that preferences vary across the population, we assume that there is

a random variable V ∈ V , where V is a Borel space1, which denotes preferences (or more

generally, decision rules). We assume that heterogeneity in preferences is partially explained by

observable differences in individuals’ attributes (e.g., age), which we denote by the real valued

random G-vector Q. Hence, we let V = ϑ(Q,A), where ϑ is a fixed V-valued mapping defined

on the sets Q×A of possible values of (Q,A), and where the random variable A (taking again

values in a Borel space A) covers residual unobserved heterogeneity in a general fashion.

1Technically: V is a set that is homeomorphic to the Borel subset of the unit interval endowed with the Borel

σ-algebra. This includes the case when V is an element of a polish space, e.g., the space of random piecewise

continuous utility functions.
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As an example for a heterogeneous population, we choose a linear structure (in consumer

demand, this corresponds approximately to an Almost Ideal demand system, with the standard

shortcut of setting the denominator terms in the income effect equal to a price index). Neglect

the dependence on Q and assume for the moment that the outcome equation would be given

by a random coefficients model,

W = X ′A1, (2.1)

where A1 denote random coefficients that vary across the population. In Hoderlein, Klemelä

and Mammen (2007), we show that the distribution of preference parameters fA1 is nonparamet-

rically identified. However, here we do not want to assume a linear heterogeneous population

from the outset, and allow for more general forms of heterogeneity. For instance,a heteroge-

neous population consisiting of two types of individuals, one linear in coefficients like model

(2.1), one with a nonlinear, but parametric, both with (finite) parameters that vary across the

population, may be formalized as

W = 1 {A0 > 0}X ′A1 + 1 {A0 ≤ 0} g(X,A2), (2.2)

for a known function g and random vector A = (A0, A
′
1, A

′
2)
′ of parameters that vary across the

population. In this model, fA is already not identified. More generally, there may be infinitely

many types, and the parameters may be infinitely dimensional, and hence we formalize the

heterogeneous population as W = φ(X, A), for a general mapping φ. Still, for any fixed value of

A, say a0, we obtain a demand function having standard properties, and the hope is that when

averaging over the unobserved heterogeneity A, rationality properties of individual demand

may still be preserved by some structure.

As mentioned, a contribution of this paper is that we allow for dependence between unob-

served heterogeneity A and all regressors of economic interest. To this end, we introduce the

real valued random K-vector of instruments S. Note that S may contain exogenous elements

in X, which serve as their own instruments.

Having defined all elements of our model, we are now in the position to state it formally,

including observable covariates Q:

Assumption 2.1 Let all variables be defined as above. The formal model of consumer demand

in a heterogeneous population is given by

W = φ(X, ϑ(Q,A)) (2.3)

X = µ(S, Q, U) (2.4)

where φ is a fixed RL-valued Borel mapping defined on the sets X×V of possible values of

(X, V ). Analogously, µ is a fixed RL+1-valued Borel mapping defined on the sets S ×Q× U of
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possible values of (S, Q, U).

Assumption 2.1 defines the nonparametric demand system with (potentially) endogenous re-

gressors as a system of nonseparable equations. These models are calles nonseparable, because

they do not impose an additive specification for the unobservable random terms (in our case A

or U). They have been subject of much interest in the recent econometrics literature (Chesher

(2003), Matzkin (2003), Altonji and Matzkin (2005), Imbens and Newey (2003), Hoderlein and

Mammen (2007), to mention just a few). Since we do not assume monotonicity in unobserv-

ables, our approach is more closely related to the latter three approaches.

As is demonstrated there, in the absence of strict monotonicity of φ in A, the function φ is not

identified, however, local average structural derivatives are. Although it will be demonstrated

that identification may proceed on this level of abstraction, in the case of endogeneity of X

this requires, however, that U be solved for because these residuals have to be employed in a

control function fashion. In the application, we specify µ to be the conditional mean function,

and consequently U to be additive mean regression residuals.

Writing Z = (Q′, U)′ , we formalize the notion of independence between instruments and

unobservables as follows:

Assumption 2.2 Let all variables be as defined above. Then we require that

FA|S,Z = FA|Z (2.5)

There are also some differentiability and regularity conditions involved, which are summarized in

the appendix in assumption 2.3. However, assumption 2.2 is the key identification assumption

and merits a thorough discussion: Assume for a moment all regressors were exogenous, i.e.

S ≡ X and U ≡ 0. Then this assumption states that X, in our case wealth and prices, and

unobserved heterogeneity are independently distributed, conditional on individual attributes.

To give an example: Suppose that in order to determine the effect of wealth on consumption,

we are given data on the demand of individuals, their wealth and the following attributes:

“education in years” and “gender”. Take now a typical subgroup of the population, e.g.,

females having received 12 years of education. Assume that there be two wealth classes for this

subgroup, rich and poor, and two types of preferences, type 1 and 2. Then, for both rich and

poor women in this subgroup, the proportion of type 1 and 2 preferences has to be identical.

This assumption is of course restrictive. Note, however, that preferences and economically

interesting regressors may still be correlated across the population. Moreover, any of the Z

may be correlated with preferences.

Now turn to the case of endogenous regressors and instruments. Suppose we were again

interested in the effect of changes in wealth on the demand of an individual. In the demand
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literature, wealth equals total expenditure, but the latter is commonly assumed to be endoge-

nous, and hence labor income, denoted by S1, is taken as an instrument. In a world of rational

agents, labor income is the result of maximizing behavior by individual agents (consumers and

firms). Much as above, we can model S1 = υ(Q,A2), where υ is a fixed Borel-measurable scalar

valued function defined on the set Q×A2. Here, A2 is a set of unobservables containing vari-

ables that govern the decision of the individual’s intertemporal optimal labor supply problem,

e.g. the attitude towards risk or idiosyncratic information sets.

First, consider the extreme case where A and A2 are independent conditional on Q. In

addition to independence between U and S1, we assume that U is not a function of S1, i.e.

U = ϕ(Q,A). Then, assumption 2.3 is quite plausible as in this case the condition FA|S1,Z = FA|Z
i.e., FA|υ(Q,A2),ϕ(Q,A),Q = FA|ϕ(Q,A),Q, can be derived as follows:

FA|υ(Q,A2),ϕ(Q,A),Q =
FA,υ(Q,A2),ϕ(Q,A)|Q
Fυ(Q,A2),ϕ(Q,A)|Q

=
FA,ϕ(Q,A)|υ(Q,A2),Q

Fϕ(Q,A)|Q
=

FA,ϕ(Q,A)|Q
Fϕ(Q,A)|Q

= FA|ϕ(Q,A),Q

where only the conditional independence between A and A2 has been used.

In contrast, assume that A = A2, i.e. the unobservable characteristics of the household that

govern the two decisions are the same. Then both S1 and U are functions of A. Nevertheless,

FA|S1,Z = FA|Z is still not completely implausible as U already reflects some influence of A.

2.2 Implications for Observable Behavior

Given these assumptions and notations, we concentrate first on the relation of theoretical

quantities and the identified objects, specifically m(ξ, z) = E[W |X = ξ, Z = z] and M(s, z) =

E[W |S = s, Z = z] which denote the conditional mean regression function using either en-

dogenous regressors and controls, or instruments and controls. Finally, let σ {X} denote the

information set (σ-algebra) spanned by X, and Ξ− be the Moore-Penrose pseudo inverse of a

matrix Ξ.

More specifically, we focus on the following questions:

1. How are the identified marginal effects (i.e., Dxm or DxM) related to the theoretical

derivatives Dxφ?

2. How and under what kind of assumptions do observable elements allow inference on key

elements of economic theory? Especially, what do we learn about homogeneity, adding up, as

well as negative semidefiniteness and symmetry of the Slutsky matrix, which in the standard

consumer demand setup we consider (with budget shares as dependent variables, and log prices

and log income as regressors), and in the underling heterogeneous population (defined by φ, x,

and v), takes the form

S(x, v) = Dpφ(x, v) + ∂yφ(x, v)φ(x, v)′ + φ(x, v)φ(x, v)′ − diag {φ(x, v)} .
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Here, diag {φ} denotes the matrix having the φj, j = 1, .., L on the diagonal and zero off the

diagonal. The second question shall be the subject of Propositions 2.2 and 2.3. We start,

however, with Lemma 2.1 which answers the question on the relationship between estimable

and theoretical derivatives. All proofs may be found in the appendix.

Lemma 2.1 Let all the variables and functions be as defined above. Assume that (A2.1) -

(A2.3) hold. Then,

(i) E[Dxφ(X,V )|X,Z] = Dxm(X,Z) (a.s.),

(ii) E[Dxφ(X,V )|S, Z] = DsM(S, Z)Dsµ(S,Z)− (a.s.).

Ad (i) : This result establishes that every individual’s empirically obtained marginal effect

is the best approximation (in the sense of minimizing distance with respect to L2-norm) to

the individual’s theoretical marginal effect. Note that it is only the local conditional average

of the derivative of φ that may be identified and not the function φ. Suppose we were given

data on consumption, income, “education in years” and “gender” as above. Then by use of the

marginal effect Dxm(X, Z), we may identify the average marginal income effect on consumption

of, e.g., all female high school graduates, but not the marginal effect of every single individual.

Arguably, for most purposes the average effect on the female graduates is all that decision

makers care about.

Ad(ii) : This result illustrates that assumption A2.2 has several implications on observables

depending which conditioning set is used. As the preceding discussion shows, conditioning on

X,Z seems natural as the subgroups formed have a direct economic interpretation. However,

recall that σ {X, Z} ⊆ σ {S,Z} . Hence, σ {S, Z} should be employed, because conditional ex-

pectations using σ {S, Z} are closer in L2-norm to the true derivatives. Altonji and Matzkin

(2005) derive an estimator for E[Dxφ(X, V )|X, Z] by integrating (i) over U , but conditioning

on X, Z. Since our focus is on testing economic restrictions, we avoid the integration step as

in many cases it reduces the power of all test statistics. Therefore we give always results using

σ {X,Z} and σ {S, Z} . The former has a more clear cut economic interpretation, the latter

yields tests of higher power.

We now turn to the question which economic properties in a heterogeneous population have

testable counterparts. This problem bears some similarities with the literature on aggregation

over agents in demand theory, because taking conditional expectations can be seen as an aggre-

gation step. We introduce the following notation: Let ej denote the j-th unit vector of length

L + 1, let Ej = (e1, .., ej, 0, .., 0) and ι be the vector containing only 1.

Now we are in the position to state the following proposition, which is concerned with adding

up and homogeneity of degree zero, two properties which are related to the linear budget set:
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Proposition 2.2 Let all the variables and functions be defined as above, and suppose that

(A2.1) and (A2.3) hold. Then, ι′φ = 1 (a.s.) ⇒ ι′m = 1 and ι′M = 1 (a.s.). If, in addition,

FA|X,Z(a, ξ, z) = FA|X,Z(a, ξ + λ, z) is true for all ξ ∈ X, then

φ(X, V ) = φ(X + λ, V ) (a.s.) ⇒ m(X, Z) = m(X + λ, Z) (a.s.).

Under (A2.1)− (A2.3) we obtain that,

φ(X, V ) = φ(X + λ, V ) (a.s.) ⇒ Dpmι + ∂ym = 0 (a.s.)

and φ(X, V ) = φ(X + λ, V ) (a.s.) ⇒ DsMDsµ
−ELι + DsMDsµ

−eL+1 = 0 (a.s.).

Finally, if we also assume (A2.1), (A2.3), µ(S, Z) = µ(S + λ, Z), as well as,

FA|S,Z(a, s, z) = FA|S,Z(a, s + λ, z), then

φ(X, V ) = φ(X + λ, V ) (a.s.) ⇒ M(S, Z) = M(S + λ, Z) (a.s.)

Remark 2.2: Note that we do not require any type of independence for adding up to carry

through to the world of observables. This is very comforting since - in the absence of any direct

way of testing this restriction - adding up is imposed on the regressions by deleting one variable.

The homogeneity part of Proposition 2.2 is ordered according to the severity of assumptions:

Homogeneity carries through to the regression conditioning on endogenous regressors and con-

trols under a homogeneity assumption on the cdf. This assumption is weaker than A2.2 as it is

obviously implied by conditional independence. The derivative implications are generally true

under conditional independence. This is particularly useful for testing homogeneity using the

regression including instruments, as for this regression to inherit homogeneity an implausible

additional homogeneity assumption, µ(S, Z) = µ(S + λ, Z), has to be fulfilled.

The following proposition is concerned with the Slutsky matrix. We need again some no-

tation. Let V [G,H|F ] denote the conditional covariance matrix between two random vectors

G and H, conditional on some σ-algebra F , and V [H|F ] be the conditional covariance ma-

trix of a random vector H. We will also make use of the second moment regressions, i.e.

m2(ξ, z) = E[WW ′|X = ξ, Z = z] and M2(s, z) = E[WW ′|S = s, Z = z]. Moreover, denote

by vec the operator that stacks a m× q matrix columnwise into a mq × 1 column vector, and

by vec−1 the operation that stacks an mq × 1 column vector columnwise into a m× q matrix.

Finally, for any square matrix B, let B = B + B′.

Proposition 2.3: Let all the variables and functions be defined as above. Suppose that (A2.1)-

(A2.3) hold. Then, the following implications hold almost surely:

S nsd ⇒ Dpm + ∂ym2 + 2 (m2 − diag {m}) nsd , and

S nsd ⇒ DsMDsµ−EL + vec−1 {Dsvec [M2] Dsµ
−eL+1}+ 2 (M2 − diag {M}) nsd
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However , if and only if V [∂yφ, φ|X,Z] , respectively V [∂yφ, φ|S, Z] , are symmetric we have

S symmetric ⇒ Dpm + ∂ymm′ symmetric, and

S symmetric ⇒ DsMDsµ
−EL + DsMDsµ

−eL+1M
′ symmetric

almost surely.

Remark 2.3: The importance of this proposition lies in the fact that it allows for testing

the key elements of rationality without having to specify the functional form of the individual

demand functions or their distribution in a heterogeneous population. Indeed, the only element

that has to be specified correctly is a conditional independence assumption.

Suppose now we see any of these conditions rejected in the observable (generally nonpara-

metric) regression at a position x, z. Recalling the interpretation of the conditional expectation

as average (over a “neighborhood”) this proposition tells us that there exists a set of positive

measure of the population (“some individuals in this neighborhood”) which does not conform

with the postulates of rationality. An interesting question is when the reverse implications hold

as well, i.e. one can deduce from the properties of the observable elements directly on S. This

issue is related to the concept of completeness raised in Blundell, Chen and Kristensen (2007).

It is our conjecture that some of the concepts may be transfered, but a detailed treatment is

beyond the scope of this paper and will be left for future research.

Proposition 2.3 illustrates clearly that appending “an additive error capturing unobserved

heterogeneity” and proceeding as if the mean regression m has the properties of individual

demand is not the way to solve the problem of unobserved heterogeneity. Note that we may

always append a mean independent additive error, since φ = m+(φ−m) = m+ ε. The crux is

now that the error is generally a function of y and p. For instance, the potentially nonsymmetric

part of the Slutsky matrix becomes

S = Dpm + ∂ymm′ + Dpε + (∂ym) ε′ + (∂yε) m′ + (∂yε) ε′ ,

and the last four terms will not vanish in general.

Returning to Proposition 2.3, one should note a key difference between negative semidefi-

niteness and symmetry. For the former we may provide an “if” characterization without any

assumptions other than the basic ones. To obtain a similar result for symmetry, we have to

invoke an additional assumption about the conditional covariance matrix V [∂yφ, φ|X,Z]. This

matrix is unobservable - at least without any further identifying assumptions. Note that this

assumption is (implicitly) implied in all of the demand literature, since symmetry is inherited

by Dpm + ∂ymm′ only under this assumption.

Conversely, if this additional assumption does not hold, we are able to test at most for ho-

mogeneity, adding up and Slutsky negative semidefiniteness. This amounts to demand behavior

generated by complete, but not necessarily transitive preferences. Details of this demand theory
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of the weak axiom can be found in Kihlstrom, Mas-Colell and Sonnenschein (1976) and Quah

(2000). Furthermore, note some parallels with the aggregation literature in economic theory:

Only adding up and homogeneity carry immediately through to the mean regression. This

result is similar in spirit to the Mantel-Sonnenschein theorem, where only these two properties

are inherited by aggregate demand. It is also well known in this literature that the aggrega-

tion of negative semidefiniteness (usually shown for the Weak Axiom) is more straightforward

than that of symmetry. Also, a matrix similar to V [∂yφ, φ] has been used in this literature (as

“increasing dispersion”, see Härdle, Hildenbrand and Jerison (1989)).

3 Empirical Implementation

In this section we discuss all matters pertaining to the empirical implementation: We give

first a brief sketch of the econometrics methods, an overview of the data, mention some issues

regarding the econometric methods, and present the results.

3.1 Econometric Specifications and Methods

From our identification results in proposition 2.2 and 2.3, we are able to characterize testable

implications on nonparametric mean regressions. It is imperative to note that these mean re-

gressions are only the reduced form model, and not a specification of the structural model.

As discussed above, the implications will depend on the independence assumption that a re-

searcher deems realistic. In the demand literature, it is log total expenditure that is taken to

be endogenous, and labor income is taken as additional instrument, see Lewbel (1999). The

basic reason is preference endogeneity: since the broad aggregates of goods typically considered

(e.g., ”Food”) explain much of total expenditure, it is suspected that the preferences that de-

termine demand for these broad categories of goods, and those how determine total nondurable

consumption are dependent. Prices, in turn are assumed to be exogenous, because unlike in IO

approaches were the demands for individual goods is analyzed, and price endogeneities may be

suspected on grounds that firms charge different consumers differently, the broad categories of

good typically analyzed are invariant to these types of considerations. Still, one may question

this exogeneity assumption, and we can only emphasize that nothing in our chain of argumen-

tation precludes handling this endogeneity in precisely the same way than total expenditure

endogeneity.

As discussed in the introduction, for purpose of recovering U we have to specify the equation

relating the endogenous regressors total expenditure S to instruments only. In this paper,

we have settled for the general nonparametric form Y = µ(S,Z) = ψ(S, Q) + σ2(S,Q)U,

with the normalization E [U |S, Q] = 0 and V [U |S, Q] = 1. In supplementary material that
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may be downloaded from the author’s webpage, we discuss issues in the implementation of

estimators and test statistics in detail. Here we just mention briefly that we estimate all

regression functions by local polynomials, and form pointwise nonparametric tests using these

estimators. We evaluate all tests at a grid of n = 3000 observations that are iid draws from the

data. To derive the asymptotic distribution of our test statistic at each of these observations,

we apply bootstrap procedures. In the case of testing homogeneity, we use the fact that

the hypothesis, i.e. m(P, Y, Z) = m(P + λ, Y + λ, Z) may be reformulated as m(P̃ , Y, Z) =

m(P̃ , Z), where P̃ = P − Y, i.e., the test reduces the a nonparametric system of equations

omission of variables test. Consequently, constructing a bootstrap sample under the null, i.e.,

with homogeneity imposed, is straightforward. The limiting distribution, as well as arguments

showing the consistency of the boostrap, are then straightforward, and may be related to Ait-

Sahalia, Bickel and Stoker (2001).

The case of testing symmetry is more involved, as there is no easy way of constructing

symmetry restricted residuals. However, by similar arguments as in Haag, Hoderlein and Pen-

dakur (2007), it is possible to obtain the limiting distribution of the test statistic. Moreover,

adaptation of their idea of deriving a bootstrap distribution under the null (by exploiting the

structure of the Kernel estimator, as well as the fact that under the null the bias vanishes) to

our pointwise testing problem is straightforward. This has the added benefit that the consis-

tency of the bootstrap may be established along similar lines. Finally, a bootstrap procedure

for testing negative semidefiniteness may be devised using a similar idea by Härdle and Hart

(1993). Essentially, the idea is to look at the bootstrap distribution of the largest eigenvalue.

This procedure is consistent, provided there is no multiplicity of eigenvalues, which is not a

problem in our application. For technical details we refer again to the supplementary material

that may be downloaded from the author’s webpage.

3.2 Data

The FES reports a yearly cross section of income, expenditures, demographic composition and

other characteristics of about 7,000 households. We use the years 1974-1993, but exclude the

respective Christmas periods as they contain too much irregular behavior. Like the parametric

literature, because of measurement error we focus on the subpopulation of two person house-

holds, both adults, at least one is working and the head of household is a white collar worker,

see Lewbel (1999). We provide a summary statistic of our data in table in the appendix.

The expenditures of all goods are grouped into three categories. The first category is related

to food consumption and consists of the subcategories food bought, food out (catering) and

tobacco, which are self explanatory. The second category contains expenditures which are

related to the house, namely housing (a more heterogeneous category; it consists of rent or
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mortgage payments), furniture as well as household goods and services. Finally, the last group

consists of motoring and fuel expenditures, categories that are often related to energy prices.

For brevity, we call these categories food, housing and energy. These broader categories are

formed since more detailed accounts suffer from infrequent purchases (recall that the recording

period is 14 days) and are thus often underreported. Together they account for 50-60% of total

expenditure on average, leaving a forth residual category. We removed outliers by excluding

the upper and lower 2.5% of the population in the three groups.

Income is constructed as in the definition of household below average income study (HBAI).

It is roughly defined as net income after taxes, but including state transfers. We include the

remaining household covariates as regressors. Specifically, we use principal components to re-

duce Q to some three orthogonal approximately continuous components, mainly because we

require continuous covariates for nonparametric estimation. While this has some additional ad-

vantages, it is arguably ad hoc. However, we performed some robustness checks like alternating

the components or adding parametric indices to the regressions, and the results do not change

in an appreciable fashion.

3.3 Empirical Results in Detail

Although they are not in the focus of this paper, because they are building blocks for our test

statistics we display in the appendix some nonparametric estimates of the function and the

derivatives. In figures 1-3 in the appendix we show the budget shares of the three categories

of goods against log total expenditure. Note that the food budget share is downward sloping

in income, whereas the others are weakly increasing or constant across the expenditure range.

Moreover, we also show two compensated own price effects as well as one compensated cross

price effect in figures 4 - 6. They show that the compensated own price effects of food and

housing are negative, as predicted by theory. The cross price effect is very small in comparison,

but note the rather large confidence bands around all the derivatives. Both observations are

indicative that negative semidefniteness may not be rejected. All functions are plotted at the

mean level of all other regressors, and obviously at other values of the regressors the picture

varies. The largely negative compensated own price effects, however, remain preserved.

Turning to the test statistics, they are constructed such that the implications of economic

theory are true under the null. Moreover, the tests are to be performed pointwise at the individ-

ual observations. A rejection means that the original condition, e.g., negative semidefiniteness

in the underlying heterogeneous population, cannot hold in the neighborhood of an individual.

Although this gives an accurate picture of the behavior on individual level, it results in a flood

of results, and we aggregate across the population as a means of condensing the result.

Before discussing the results in detail, two important issues have to be clarified. The first
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concerns the functional form. Using the test of Haag and Hoderlein (2006), we reject the null

that the regression is a Quadratic Almost Ideal. More precisely, the value of the test statistic is

7.32, while the 0.95 quantile of the bootstrap distribution is 3.65. Indeed, this finding strongly

suggests using a flexible nonparametric form - otherwise rejections of economic hypotheses may

occur just because we have chosen the wrong functional form.

The second issue is endogeneity: We use total expenditure as regressor, which is potentially

endogenous. Employing again a Haag and Hoderlein (2006) type test, we reject the hypothesis

that U should be excluded from the regression with a p-value of 0.01. Although this strongly

suggests that a control function correction for endogeneity should be adopted, below we will

see that in terms of economic restrictions the results are largely comparable.

The main results are condensed in tables 4.1 to 4.3. We report the results using total

expenditure under both exogeneity and endogeneity, where we handle the latter by including

control function residuals. The results using the instruments plus controls regressions produce

similar results, and are therefore not reported here.

Table 4.1 shows results for tests of the negative semidefiniteness hypothesis. With respect

to the individual results we report both the uncompensated and compensated price effect (i.e.,

Slutsky) matrices. Specifically, it shows the percentage of the population for which negative

semidefiniteness can not be rejected at the 0.95 percent confidence level.

Hypothesis Uncomp. PE Comp. PE

Negative Semidefiniteness under Exogeneity 0.81 0.69

Negative Semidefiniteness under Exogeneity and Homogeneity 0.81 0.82

Negative Semidefiniteness under Endogeneity and Homogeneity 0.92 0.93

Table 4.1. Percentage of the Population in Accordance with Slutsky Semidefiniteness

From these results it is obvious that negative semidefiniteness is well accepted. Note from

the first row the somewhat unexpected result that the uncompensated price effect matrix is more

often negative semidefinite than the compensated one. This seems to disagree with economic

theory. However, a careful examination of the individual results shows that matrices that were

only barely negative semidefinite get slightly perturbed by the relatively strong income effect

matrix (i.e., the difference between the two matrices).

This curiosity disappears once we impose homogeneity, because it is hard to imagine circum-

stances under which negative semidefiniteness holds, while homogeneity does not. Imposing

homogeneity, the Slutsky matrices appear to be more negative semidefinite than the uncom-

pensated price effect matrices. Finally, the inclusion of endogeneity improves the result even

further, so that we arrive at an almost complete compliance of individuals with negative semidef-

initeness. Moreover, there is no obvious structure in the remaining rejections, i.e. no clustering

13



at certain household characteristics.

With respect to homogeneity, our results look similar. As can be seen from table 4.2, it

is widely accepted. The table shows in the first column again the hypothesis that is being

tested, while the second and third row display the number of non rejections at the 0.90 and

0.95 confidence level.

Hypothesis 0.90 0.95

Homogeneity under Exogeneity 0.73 0.89

Homogeneity under Endogeneity 0.71 0.87

Table 4.2. Percentage of the Population in Accordance with Homogeneity

Here we see that exogeneity and endogeneity do not generate materially different results,

although that of endogeneity looks slightly worse. Again, no clear pattern of violations arises.

Finally, the results for symmetry are displayed in table 4.3. As before, the percentage of

non rejections at the significance levels 0.90 and 0.95 are being displayed.

Hypothesis 0.90 0.95

Symmetry under Exogeneity 0.93 0.95

Symmetry under Exogeneity and Homogeneity 0.86 0.92

Symmetry under Endogeneity and Homogeneity 0.91 0.95

Table 4.3. Percentage of the Population in Accordance with Slutsky Symmetry

It is interesting to note that accounting for homogeneity worsens the result, while correcting

for endogeneity generally improves the results. However, the results do not differ substantially.

As the main caveat for our analysis, the following point should be emphasized: Indeed,

some point estimates of the Slutsky matrix appear to be far from symmetric. The same is,

perhaps to a lesser extent, also true of negative semidefiniteness. However, it is especially the

cross price effects that are measured with very low precision, and hence have huge standard

errors. This familiar problem of parametric demand analysis (cf. Lewbel (1999)) is aggravated

by the high dimensional nonparametric approach taken here. Hence, we should stress the fact

that we merely were not able to reject these hypotheses.

Nevertheless, it is noteworthy that overall economic theory provides an acceptable hypoth-

esis for the population, as is indicated by results beyond the 80% mark. Hence, at least in this

specific subpopulation, economic theory fares well.
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4 Conclusion

In this paper we have established that it is really only necessary to impose one substantial

restriction in order to perform most of demand analysis empirically. This is the conditional

independence assumption A2.2. Once this assumption holds nothing else apart from regularity

conditions has to be assumed to test conclusively the main elements of demand theory, in

particular homogeneity and negative semidefiniteness. It is a key feature of our approach that

no material assumptions about functional form or heterogeneity of the population have to be

imposed.

Symmetry of the Slutsky matrix turns out to be the only major implication of rationality

that will only ever be testable under additional identification assumptions. The doubts on the

empirical verifiability of this property suggests that economic theory should perhaps concen-

trate on a model of demand that is entirely testable, such as in Kihlstrom, Mas-Colell and

Sonnenschein (1976) or Quah (2000).

The conditional independence assumption plays a critical role in this paper. However, it

is sufficiently general to nest a variety of scenarios including control function IV, and proxy

variables, which is not detailed in this paper but straightforward. The main task of the re-

searcher is to choose out of a set of independence assumptions the one that he believes to be

most realistic on economic grounds. This paper has established that from this starting point

on empirical economic analysis can proceed without any major additional restrictions.

Appendix

A.1 Assumption 2.3: Regularity Conditions

Assume that the demand functions φ be continuously differentiable in x for all x ∈ X ⊆
RL+1. This restricts preferences to be continuous, strictly convex and locally nonsatiated,

with associated utility functions everywhere twice differentiable. Assume in addition that µ

be continuously differentiable in s for all s ∈ S ⊆ RK+1, and that Dsµ has full column rank

almost surely. Assume that preferences be additively separable over time, which justifies the

use of total expenditure as wealth. Moreover, we confine ourselves to observationally distinct

preferences, i.e. if vj, vk ∈ V and vj 6= vk, then there exists a set X ⊆ RL+1 with P(X ) > 0,

such that ∀x ∈ X : Dxφ(x, v1) 6= Dxφ(x, v2). Finally, we require the following condition for

dominated convergence: there exists a function g, s. th. ‖vec [Dxφ(x, ϑ(q, a))]‖ ≤ g(a), with∫
g(a)FA(da) < ∞, uniformly in (x, q).
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A.2 Proofs of Lemmata and Propositions

Proof of Lemma 2.1:

Ad (i), (iii) First recall that, by definition, 0 ≤ W ≤ 1. Thus, the expectation exists and

E[|W |] ≤ c < ∞, where c is a generic constant (the same holds for the second moment). From

this it follows that all conditional expectations exist as well, and are bounded.

Next, let x, z be fixed, but arbitrary.

Dxm(x, q, u) = Dx

∫

A

φ(x, ϑ(q, a))FA|X,Q,U(da, x, q, u)

= Dx

∫

A

φ(x, ϑ(q, a))FA|Q,U(da, q, u),

due to A2.2 =⇒ FA|X,Q,U = FA|Q,U . Using dominated convergence, we obtain that the rhs equals

∫

A

Dxφ(x, ϑ(q, a))FA|Q,U(da, q, u) (A.1)

But due to A2.2 this is (a version of) E[Dxφ|X = x, Z = z]. Upon inserting random variables for

the fixed z, y the statement follows. For (iii), by the same arguments DsM(s, z) = E[Dxφ|S =

s, Z = z]Dsµ(s, z). Postmultiplying with Dsµ(s, z)− produces the result. Q.E.D.

Ad (ii) To see the ”if” part, simply note that if V is Z-measurable,

E[Dxφ(X, ϑ(Q,A))|X, Z] = Dxφ(X, θ(Z))

for some function θ.

To see the ”only if” part, assume that V is not Z-measurable. Then, there exist two sets

Ω0, Ω1 ⊂ Ω such that P [Ωl] > 0, l = 0, 1 and for all ωj ∈ Ω0, ωk ∈ Ω1, k 6= j, Z (ωk) = Z (ωj),

X (ωk) = X (ωj), but V (ωk) 6= V (ωj) since otherwise V would be Z-measurable on Ω0 ∪ Ω1

or X and V not independent conditional on Z. By the observational distinctness condition it

follows that Dxφ(ωk) 6= Dxφ(ωj), for all ωj ∈ Ω0, ωk ∈ Ω1, k 6= j, although

E[Dxφ(X, V )|X, Z, {ω ∈ Ω0}] = E[Dxφ(X, V )|X, Z, {ω ∈ Ω1}]

is possible. Hence, Dxm(ω) 6= Dxφ(ω) for some Ωs ⊆ Ω0 ∪ Ω1 with P [Ωs] > 0 Q.E.D.

Proof of Proposition 2.2: Adding up follows trivially by taking conditional expectations of

ι′φ = 1 (a.s). To see homogeneity, recall that

m(x + λ, q, u) =

∫

A

φ(x + λ, ϑ(a, q))FA|X,Q,U(da, x + λ, q, u)
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Inserting φ(x + λ, v) = φ(x, v) as well as FA|X,Q,U(a, x + λ, q, u) = FA|X,Q,U(a, x, q, u) produces
∫

A

φ(x + λ, ϑ(a, q))FA|X,Q,U(da, x + λ, q, u) =

∫

A

φ(x, ϑ(a, q))FA|X,Q,U(da, x, q, u) = m(x, q, u).

The same argumentation holds also for

M(s + λ, q, u) =

∫

A

φ(µ(s + λ, q, u) + λ, ϑ(a, q))FA|S,Q,U(da, s, q, u),

using additionally that µ(s+λ, q, u) = µ(s, q, u). Finally, the statements abouts the derivatives

follow straightforwardly from the fact that homogeneity implies that Dpφι + ∂yφ = 0 (a.s.), in

connection with Lemma 2.1. Q.E.D.

Proof of Proposition 2.3: Ad Negative Semidefiniteness : Let A(ω), ω ∈ Ω, denote any

random matrix. If p′A(ω)p ≤ 0 for all ω ∈ Ω and all p ∈ RL, then, upon taking expectations

w.r.t. an arbitrary probability measure F, it follows that
∫

p′A(ω)pF (dω) ≤ 0 ⇔ p′
∫

A(ω)F (dω)p ≤ 0, for all p ∈ RL.

From this S nsd (a.s.) ⇒ E [S|X, Z] nsd (a.s.) is immediate. Let E [S|X, Z] = B, and note

that since the definition of negative semidefiniteness of a square matrix B of dim L involves

the quadratic form, p′Bp ≤ 0, we see that if we put B̄ = B + B′, we have

p′B̄p = 2p′Bp for all p ∈ RL,

and B̄ symmetric, implying that B is negative semidefinite if and only if B̄ is negative semidef-

inite. From

B = E [S|X,Z]

= E [Dpφ|X, Z] + E [∂yφφ′|X,Z] + E [φφ′|X, Z]− E [diag(φ)|X, Z]

= B1 + B2 + B3 + B4

follows that B̄ = B + B′ = B1 + B2 + B3 + B4 + B′
1 + B′

2 + B′
3 + B′

4 = B̄1 + B̄2 + 2 (B3 + B4) ,

since B3 and B4 are symmetric. Thus we have that

S nsd (a.s.) ⇒ B̄1 + B̄2 + 2 (B3 + B4) nsd (a.s.)

From Lemma 2.1 it is apparent that B̄1 = Dpm+Dpm
′. To see that B̄2 = ∂ym2(x, z), first note

that due to the boundedness of W the second moments and conditional moments exist, so that

∂ym2(x, z) = ∂y

∫

A

φ(x, ϑ(q, a))φ′(x, ϑ(q, a))FA|X,Z(da; x, z)

= E[∂y(φφ′)|X = x, Z = z]

= E[∂yφφ′ + φ∂yφ
′|X = x, Z = z] = B̄2
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B3 and B4 are trivial. Upon inserting random variables, the statement follows. The proof using

the regression with instruments and controls follows by the same arguments in connection with

Lemma 2.1 (iii). Q.E.D.

Ad Symmetry To see the “if” direction, note first that S symmetric iff K = Dpφ + ∂yφφ′ is

symmetric, which implies that E [K|Y, Z] is symmetric since Aij = E [Kij|Y, Z] = E [Kji|Y, Z] =

Aji, where the subscript ij denotes the ij-th element of the matrix. This implies in turn that

E [K|Y, Z] = E [Dpφ|Y, Z] + E [∂yφφ′|Y, Z] (A.2)

= E [Dpφ|Y, Z] + E [∂yφ|Y, Z]E [φ′|Y, Z] + V [∂yφ, φ|Y, Z]

is symmetric, from which E [Dpφ|Y, Z] + E [∂yφ|Y, Z]E [φ′|Y, Z] is symmetric if V [∂yφ, φ|Y, Z]

is assumed to be symmetric. By Lemma 2.1. this equals Dpm + ∂ymm′.

To establish the “only if” direction, we have to show that V [∂yφ, φ|Y, Z] not symmetric implies

that S symmetric does not imply that Dpm+∂ymm′ be symmetric. To this end, assume again

that S be symmetric, and consider (A.2). In this case, E [K|Y, Z] is symmetric, but due to

V [∂yφ, φ|Y, Z] not symmetric we obtain that

Dpm + ∂ymm′ = E [K|Y, Z]− V [∂yφ, φ|Y, Z]

has to be not symmetric as well. Q.E.D.
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Appendix 2

Summary Statistics of Data: Household Charcteristics, Income and

Budget Shares after Oulier Removement

Variable Minimum 1st Quartile Median Mean 3rd Quartile maximum

number of female 0 1 1 1.073 1 2

number of retired 0 0 0 0.051 0 1

number of earners 0 1 2 1.692 2 2

Age of HHhead 19 31 49 46 58 90

Fridge 0 1 1 0.987 1 1

Washing Machine 0 1 1 0.882 1 1

Centr. Heating 0 1 1 0.804 1 1

TV 0 1 1 0.874 1 1

Video 0 0 0 0.407 1 1

PC 0 0 0 0.792 0 1

number of cars 0 1 1 1.351 2 10

number of rooms 1 4 5 5.455 6 26

ln.HHincome 3.779 4.667 5.216 5.171 5.681 6.453

BS GROUP 1 0 0.140 0.198 0.216 0.275 0.784

Food bought 0 0.082 0.130 0.148 0.195 0.784

Catering 0 0.014 0.035 0.046 0.065 0.719

Tobacco 0 0 0 0.020 0.032 0.426

BS GROUP 2 0 0.205 0.297 0.317 0.406 0.959

Housing 0 0.102 0.179 0.198 0.272 0.874

HHgoods 0 0.018 0.042 0.075 0.091 0.939

HHservices 0 0.020 0.031 0.043 0.050 0.836

BS GROUP 3 0 0.087 0.150 0.182 0.242 0.859

Motoring 0 0.035 0.096 0.130 0.186 0.841

Fuel 0 0.025 0.041 0.052 0.064 0.640
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Figure 1: Mean regression budget share “food” on log income controlling for covariates and

prices.
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Figure 2: Mean regression budget share “housing” on log income controlling for covariates and

prices.
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Figure 3: Mean regression budget share “energy” on log income controlling for covariates and

prices.
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Figure 4: Compensated own price effect of “food”.
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Figure 5: Compensated own price effect of “housing”.
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Figure 6: Compensated cross price effect of “energy” prices on “food” demand
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Appendix 3

Econometric Specification

In this seperate appendix we establish the asymptotic properties of an estimator for the non-

parametric demand systems, which is going to involve a system of local polynomial regression.

Moreover, we discuss the pointwise test statistics for all economic hypotheses in the paper.

As already pointed out in the text, the first order asymptotic distribution theory involves

quantities that are cumbersome to estimate, which was the reason for using alternatively wild

bootstrap procedures for testing all hypotheses. Here, we give arguments for the consistency

of the bootstrap for the test statistics’ distribution.

The Nonparametric Demand System as Local Linear Systems of Equa-

tions

In the following subsection, we concentrate on the case of one endogenous variable, namely

total expenditure. This is in line with the parametric literature, see Lewbel (1999). To treat

the exogenous and the endogenous scenario under the same format, we consider the regression

of W on P, B and Z, where B may now denote either total expenditure or labor income, which

were denoted as Y or S, respectively, and recall that Z may include control function residuals

U . This extension is not trivial, as this regressor has to be replaced by a pre-estimated version

which involves, e.g., a Nadaraya Watson pre-estimator µ̂ for µ. Finally, we assume µ to be an

additive function of the error, but our specification will allow for heteroscedasticity. We assume

that

Y = µ(S, Z) = ψ(S, Q) + σ2(S, Q)U, (4.1)

with the normalization E [U |S, Q] = 0 and V [U |S,Q] = 1. This specific structure will lead

to slightly more specific implications for the test statistics. In particular, we will require an

estimator for the scedastic function, ∂sσ2.

In what follows we assume to have an iid sample, and we index all random variables by a

subscript i, while superscript j indexes goods (equations). Following standard notational con-

vention, let Xi = [P ′
i , Bi, Z

′
i]
′ denote all regressors, where Zi = [Q′

i, Uni]
′ contains the estimated

control function residuals from the regression of total expenditure on instruments, formally

Uni = Bi − m̂L(Si, Qi), where m̂L denotes a Nadaraya Watson estimator. Hence, the set of all

regressors has dimension d = L + 1 + K + 1.

The task of estimating an empirical object which has some economically interpretable struc-
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ture involves the model

Wi = m(Xi) + Σ1(Xi)ηi,

where m(·) and Σ1(·) are now assumed to be Borel-measurable, smooth, L − 1 vector valued

mean regression2, and L−1×L−1 matrix valued scedastic functions, respectively. We assume

that the ηi are iid mean zero unit variance random vectors. In addition to the L−1 budget shares

we consider additional dependent variables denoted as Rni, because we require an estimator

for the mean regression ψ, as well as the scedastic function σ2 in mode (4.1). Consequently,

let Ji = [W ′
i , Yi, U

2
ni]
′ = [W ′

i , R
′
ni]
′ denote the vector of dependent variables, which is of length

L = L + 1.

The estimation of the mean regression functions, the scedastic function and their derivatives

at a particular point x0 is based on local polynomial modelling. To this end, consider the systems

local linear (SLL) estimator which solves the following weighted least squares minimization

problem:

min
θ(z)

n−1

n∑
i=1

KHn (Xi − x0) ξ′iξi, (A.1)

where, θ(x0) = {θ1(x0), ..., θ
L(x0)),and for all j = 1, .., L, θj(x0) = {mj(x0), h∂pl

mj(x0), h∂ym
j(x0),

h∂zk
mj(x0)}, j = 1, .., L, l = 1, .., L, k = 1, .., K. The scaling of the marginal effects by

h has been performed to keep track of the difference in speed of convergence. Moreover,

ξi = [ξ1
i , ..., ξ

L
i ]′, where, for all j = 1, .., L,

ξj
i = J j

i −mj(x0)−
L∑

l=1

h∂pl
mj(x0)

P l
i − pl

h
− h∂bm

j(x0)
Bi − b

h
−

K∑

k=1

h∂zk
mj(x0)

(
Zk

i − zk

h

)
.

In addition, let KHn(ψ) = |Hn|−1/2K(H
−1/2
n ψ) where K is an L-variate kernel such that∫

K(ψ)dψ = 1, and Hn is an L × L symmetric positive definite bandwidth matrix depend-

ing on n. For simplicity of exposition, we shall use a product Kernel and a diagonal bandwidth

matrix, with Hn = h2
nIL. The asymptotic distribution of this systems-of-equations, regression-

plus-scedastic function estimator with generated regressors is given by the following theorem:

Proposition A.1: Let the model be as defined above, and let A1-A8 given in the Appendix

hold. Then follows that

√
nhd

(
θ̂(x0)− θ(x0)− h2bias(x0)

)
d→ N (0, Ξ(x0)⊗ A),

where d denotes the number of regressors excluding the constant. Moreover, bias(x0) contains

the leading bias term detailed in the proof, A is a fixed (d + 1) × (d + 1) matrix given by

2We impose the adding up constraint that expenditure shares add up to 1.
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A = fX(x0)
−1B−1CB−1, fX(x0) > 0 denotes the joint distribution of all regressors, and the

fixed matrices B and C are defined as

B
(d+1)×(d+1)

=




1 0 · · · 0

0 µ2 0
...

... 0
. . . 0

0 · · · 0 µ2




and C
(d+1)×(d+1)

=




κd+1
0 κd

0κ1 · · · κd
0κ1

κd
0κ1 κd

0κ2 · · · κd
0κ2

...
...

. . .
...

κd
0κ1 κd

0κ2 · · · κd
0κ2




,

where µ2 =
∫

ψ2K(ψ)dψ, and κl =
∫

ψlK2(ψ)dψ, l = 0, 1, 2. Finally

Ξ(x0) =




Σ1(x0)Σ1(x0)
′ σ2(x0)Σ1(x0)µηε σ2

2(x0)Σ1(x0)µηε2

σ2(x0)µ
′
ηεΣ1(x0)

′ σ2
2(x0) µε3σ3

2(x0)

σ2
2(x0)µ

′
ηε2Σ1(x0)

′ µε3σ3
2(x0) µε4σ4

2(x0)


 ,

with Σ(x0) and σ2(x0) as defined above, and µηkεl = E
[
ηk

i ε
l
i

]
, k = 0, 1, l = 1, 2, 3.

Proof: See Appendix.

Remarks: This result extends standard local polynomial estimators to systems of equations

and our setup which includes the control function residuals as generated regressors. The latter

is perhaps the main innovation. To tackle it, in addition to standard assumptions we require

that ψ and σ2 be four times differentiable and the Kernel be of fourth order and differentiable.

Testing Hypotheses in this Framework

This subsection is concerned with devising tests for the various hypotheses. We focus in partic-

ular on devising bootstrap versions of our test statistics, firstly because they are straightforward

to implement, but secondly because the first order asymptotic analysis may give a poor ap-

proximation to the true finite sample behavior of the test statistics.

Homogeneity

Recall the testable implications of the assumptions that homogeneity holds in a heterogeneous

population, as given in P2.2; adapted to our scenario:

Dpm (x0) ι + ∂ym (x0) = 0 for all x0 ∈ supp (X ) . (4.2)

and DpM (x0) ι+∂sM (x0) (∂sψ (x0) + ∂sσ2 (x0) U)−1 = 0 for all x0 ∈ supp (X ) . This hypothesis

is easily rewritten as Rθ(x0) = 0, where R denotes the L − 1 × d(L − 1) matrix R = IL−1 ⊗[
0 ιL+1 0K

]
, which together with P3.1 suggests the test statistic

Ψ̂Hom,Ex(x0) =
[
R

[
θ̂ (x0)− h2b̂ias(x0)

]]′ [
R′

[
Σ̂1Σ′

1(x0)⊗ Â (x0)
]
R

]−1

R
[
θ̂ (x0)− h2b̂ias(x0)

]
,
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where Â(x0) = f̂X(x0)
−1B−1CB−1 and b̂ias(x) is a pre-estimator for the bias3. Then, by a

trivial corollary to proposition 3.1, Ψ̂Hom,Ex
d→ χ2

L−1.

This test statistic could be used in principle, however it’s disadvantage is that involves the

estimation of the multivariate scedastic function Σ̂1Σ′
1 and an pre-estimator of the bias, both

of which may be hard to obtain in practise. Hence, we consider the following test statistic

instead:

Γ̂Hom,Ex(x0) =
(
Rθ̂(x0)

)′
Rθ̂(x0).

It’s asymptotic distribution may be derived through the fact that for any multinormal random

L-vector ζ, ζ ∼ N(0, Σ) the statistic Ξ = ζ ′ζ has moment generating function mgfΞ(t) =

det {I − 2tΣ}−1/2. However, as with the above test Ψ̂Hom,Ex this distribution is hardly useable

in practise, and we will apply the bootstrap to obtain an approximation to the test’s true

distribution instead.

More specifically, the following bootstrap procedure appears natural: 1. Calculate (multi-

variate) residuals ε̂i = Wi − m̂(P̃i, Yi, Zi). 2. For each i randomly draw ε∗i = (ε1∗
i , . . . , εL−1,∗

i )′

from a distribution F̂i that mimics the first two moments of ε̂i. 3. Generate the bootstrap

sample (W ∗
i , P̃ ∗

i , Z∗
i ), i = 1, . . . , n by W ∗

i = m̂h̃(P̃i, Zi) + ε∗i and P̃ ∗
i = P̃i, Z

∗
i = Zi. Here

m̂h̃(P̃i, Zi) denotes the restricted estimator. 4. Calculate Γ̂∗Hom,Ex from the bootstrap sample

(W ∗
i , P̃ ∗

i , Z∗
i ), i = 1, . . . , n. 5. Repeat steps 2 to 4 B times to obtain critical values for Γ̂Hom,Ex.

To see that the wild bootstrap provides a consistent estimator for the test statistic’s dis-

tribution, consider the following: First, the asymptotic distribution of the SLLE is derived as

above. Second, the bootstrap version of the SLLE, θ̂∗(x0) converges under the same condi-

tions, as well as under standard assumptions on the distribution of ε∗i against the same limiting

distribution. Third, since Γ̂Hom,Ex(x0) is a simple quadratic form of the original estimators,

apply the continuous mapping theorem to see that the properly normalized version of the test

statistic and its bootstrap version converge against the same limiting distribution. In Haag

and Hoderlein (2006), we examine in detail the asymptotic behavior of a more general test

that is a sum of the homogeneity test statistics, ie τ̂ = n−1
∑

i=1,..,n Γ̂Hom,Ex(Xi), including a

formal examination of the consistency of the bootstrap. Many of the arguments can be directly

transferred to our setup, however, since large sample theory is not the focus of the paper we

desist from this here.

The test becomes slightly more involved if we want to scrutinize homogeneity in the endoge-

nous case. First, note that ∂sσ2 = ∂sσ
2
2

[
2 (σ2

2)
−1/2

]−1

. Then, G (θ, x0) = (G1 (θ, x0) , .., GL−1 (θ, x0))
′ =

3Since the bias contains largely second derivatives, we may use a local quadratic or cubic estimator for the

second derivative, with a substantial amount of undersmoothing.
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0, where ∀ j, Gj (θ, x0) =
{

βL
y (x0) + 0.5βL

y (x0)α
L (x0)

−1/2 u
} ∑

l β
j
l (x0)+βj

y(x0). This leads to,

Γ̂Hom,End(x0) =
[
G

(
θ̂, x0

)]′
G

(
θ̂, x0

)
,

for which critical values are again obtained via the bootstrap.

Symmetry

Now the test statistics for the hypothesis of symmetry in a heterogeneous population - as given

in P2.3 - are being analyzed. Recall that under the additional identification assumption that

V {∂yφ, φ|X, Z} be symmetric, the matrices Dpm(x0)+∂ym(x0)m(x0)
′ and DpM(x0)+∂sM(x0)

{∂sψ(x0) + ∂sσ2(x0)U}−1 M(x0)
′ are shown to be symmetric for all x0 ∈supp(X ). To derive a

test for the first case, stack the 1/2L(L−1) nonlinear restrictions Rkl(θ, x0), at a fixed position

x0,

Rkl(θ, x0) = ∂pk
ml(x0)+∂ym

l(x0)m
k(x0)−

(
∂pl

mk(x0) + ∂ym
k(x0)m

l(x0)
)

= 0, k, l = 1, .., L−1, k > l,

into a vector R. Consequently, “Dpm(x0) + ∂ym(x0)m(x0)
′ symmetric for all x0 ∈ supp (X )”

becomes “R(θ, x0) = 0 for all x0 ∈ supp (X )”. This suggest using the quadratic form

Γ̂Sym,Ex(x0) =
[
R(θ̂, x0)

]′
R(θ̂, x0),

and check whether this is significantly bigger than zero. Again, building upon P3.1, a standard

distribution theory could be derived. However, looking at the complicated structure of the test

statistic for symmetry, the asymptotic approach to implement the test might even be less reliable

than it was for the tests of homogeneity, and bootstrap seems to be the method of choice. But to

use the wild bootstrap to calculate critical values for Γ̂Sym,Ex, the procedure has to be changed

since we have no restricted estimator to add on the unrestricted residuals. In contrast, we plug

the residuals directly in the test statistic. To see how this can be sensibly done, note that the

estimator of the derivative can be written as a weighted average ∂pk
m̂l

h(x0) =
∑n

i=1 Ṽ kl
i (x0)W

l
i ,

where Ṽ kl
i (x0) denote weights which, when applied to W l

i , yield an estimator for the price

derivative, and analogously ∂ym̂
l
h(x0) =

∑n
i=1 Ṽ yl

i (x0)W
l
i for income. Using this in the definition

of Γ̂Sym,Ex(x0) we obtain

Γ̂Sym,Ex(x0) =
L−2∑

l=1

L−1∑

k=l+1

( n∑
j=1

V kl
j (x0)W

l
j − V lk

j (x0)W
k
j

)2

with V kl
j (x0) = Ṽ kl

j (x0) + m̂k
h(x0)Ṽ

yl
j (x0). Here we use that the estimator of the function

converges faster than the estimator of the derivative. Substituting W l
l = ml(Zl)+εl

l and noting

that
n∑

j=1

V lk
j (x0)m

l(Xj, Zj)+V kl
j (x0)m

k(Xj, Zj) ≈ ∂pk
mj(x0)+mk(x0)∂ym

l(x0)−∂pl
mk(x0)−ml(x0)∂ym

k(x0) = 0
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for large n and under H0, the test statistic can be approximated by

Γ̂Sym,Ex(x0) ≈
L−2∑

l=1

L−1∑

k=l+1

( n∑
j=1

V kl
j (x0)ε

l
j − V lk

j (x0)ε
k
j

)2

The bootstrap is based on this equation and is described as follows: 1. Construct (multivariate)

residuals ε̂j = Wj − m̂h(Xj). 2. For each i randomly draw ε∗i from a two point distribution

that mimics the first two moments of ε̂i. 3. Calculate Γ̂∗Sym,Ex(x0) from the bootstrap sample

(ε∗j , Xj), j = 1, . . . , n by

Γ̂∗Sym,Ex(x0) =
L−2∑

l=1

L−1∑

k=l+1

( n∑
j=1

V kl
j (x0)ε

∗l
j − V lk

j (x0)ε
∗k
j

)2

,

4. Repeat this often enough to obtain critical values. The test for symmetry under endogeneity

follows by the same arguments with U as additional regressor.

To see that the wild bootstrap provides a consistent estimator for the statistic’s asymptotic

distribution in the case of symmetry, first note that (under standard conditions and using similar

arguments as in the proof of the asymptotic distribution of the LPEs) the limiting distributions

of Γ̂Sym,Ex(x0) and Γ̃Sym,Ex(x0) coincide under the null up to terms of smaller order than the

leading bias term. Second, under the same conditions, as well as standard assumptions on the

distribution of ε∗i , Γ̃Sym,Ex(x0) and Γ̂∗Sym,Ex(x0) converge against the same limiting distribution.

For further technical details we refer now to Haag, Hoderlein and Pendakur (2006), where we

examine the asymptotic behavior of the more general test that is a sum of the symmetry test

statistics, ie τ̂ = n−1
∑

i=1,..,n Γ̂Sym,Ex(Xi).

A test for symmetry under endogeneity follows by similar arguments, noting that the in-

strument equation is not affected by the restriction and therefore sampling under the restriction

equals sampling without the restriction.

Negative Semidefiniteness

Negative Semidefiniteness poses an added difficulty, as (much like symmetry) no restricted

estimator is available, but in addition we do not have a test statistic that is a linear (or

asymptotically linear) combination of the parameters. Instead, we focus on the bootstrap

distribution of the largest eigenvalue of the Slutsky matrix in the following fashion: 1. Construct

residuals ε̂j = Wj − m̂h(Xj, Zj). 2. For each i randomly draw ε∗j from a distribution that

mimics the first two moments of ε̂i. 3. Calculate the Slutsky matrix S∗ and largest eigenvalue

λ∗ from the bootstrap sample (ε∗j , Xj, Zj), j = 1, . . . , n. 4. Repeat this often enough to obtain

critical values. 5. Reject the hypothesis of negative semidefiniteness if the 0.05 quantile of the

distribution of the largest eigenvalue exceeds 0.

32



This procedure is similar then the one proposed by Härdle and Hart (1993), and we refer

the reader to their paper for technical details regarding the consistency of the bootstrap.

Proof of Proposition A.1:

In this proof we treat the asymptotics for the systems local polynomial estimator, including

pre-estimated dependent variable and regressors. The structure will be as follows: In the first

subsection we will give a proof of the systems local polynomial including pre-estimated squared

residuals, but excluding pre-estimated regressors. In the second subsection we will establish

how the results change, if pre-estimated regressors are included.

Assumptions: Let us state the assumptions to be made in the following. Without further

mentioning, we shall always assume that Σ is positive definite, as well as K ≥ 0,
∫

K(u)du = 1

and
∫

K4(u)du < ∞.

(A1) The ηi are zero mean and unity diagonal variance random vectors s.t. ηi is independent

of X1, · · · ,Xi, η1, · · · , ηi−1, , ε1, · · · , εi for each i ≥ 1 and every element of ηiη
′
i is uniformly

integrable. The εi are zero mean and unit variance random vectors s.t. εi is independent of

X1, · · · ,Xi, η1, · · · , ηi, , ε1, · · · , εi−1 for each i ≥ 1. Moreover, the εi have finite fourth moments

and E
[
εl

iηi

]
, l = 1, 2, 3 are finite is uniformly integrable. Finally, εi and εl

iηi, l = 1, 2, 3 are

uniformly integrable.

(A2) The Xi are iid with common density fX .

(A3) K is twice continuously differentiable with bounded second derivatives.

(A4) fX is bounded, as well as fX (x) > 0 ∀x.

(A5) Every element of the Hessian of mj, j = 1, .., L and of σ2
2 is bounded.

(A6) Every element of Ξ is bounded.

(A7) hn → 0, nhd →∞.

(A8) nhd+4 → 0.

Note that the boundedness restrictions (A5)and (A6) are not as restrictive in this scenario, as

the dependent variable only takes values in [0, 1].

Propostion A.1: Let the model be as defined above, and let A1-A8 hold. Then follows that

√
nhd

(
θ̂(x0)− θ(x0)− h2bias(x0)

)
d→ N (0, Ξ(x0)⊗ A),

where all quantities are defined in the text.
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Proof of Propostion A.1: The estimator given by the first order conditions is

θ̂(x0) = (IL̄ ⊗ [X′X])
−1

(IL̄ ⊗ X′) J
= θ(x0) + (IL̄ ⊗ [X′X])

−1
(IL̄ ⊗ X′)B1

+ (IL̄ ⊗ [X′X])
−1

(IL̄ ⊗ X′)B2

+ (IL̄ ⊗ [X′X])
−1

(IL̄ ⊗ X′)U

Here, J is the L̄n×1 vector given by J= (J ′1, .., J
′
M−1)

′ with Jj = (K
1
2
1 Jj1, .., K

1
2
n Jjn)′ ∀j = 1, .., L̄,

and recall that L̄ = (L− 1) + 1 + 1 = L + 1,

IL̄ ⊗ X is the L̄n× L̄ (d + 1) with X = (X 0, ..,X d) and

Xm = (K
1
2
1 (Xm

1 − xm
0 ) /h, .., K

1
2
n (Xm

n − xm
0 ) /h)′ ∀m = 1, .., d as well as

X 0 = (K
1
2
1 , .., K

1
2
n )′. Moreover, we need the notation

Xi − x0 = (1, (X 1
i − x1

0) /h, ..,
(X d

i − xd
0

)
/h))′

Regarding the bias terms, the first, B1, is the L̄n× 1 vector given by B1= (B̃′
1, .., B̃

′̄
L
)′

with B̃j = (K
1
2
1

h2

2
ι′Hm(Xr1)ι, .., K

1
2
n

h2

2
ι′Hm(Xrn)ι)′ ∀j = 1, .., L, where

Hm(Xr1) is the Hessian of m at an intermediate position, Xr1 = x0 + λ(Xi)
′(Xi − x0)

and B̃L̄ = (K
1
2
1

h2

2
Hσ2

2(Xr1)
′ι, .., K

1
2
n

h2

2
Hσ2

2(Xrn)′ι)′,

where Hσ2
2 denotes the vector of second derivatives including cross derivatives.

The second bias term, B2, is the L̄n× 1 vector given by B2= (0, ..0, B̆ ′̄
L
)′,

where B̆L̄ = (K
1
2
1 G1, .., K

1
2
n Gn)′ and

Gi = 2σ2(Xi)Ui(µ̂ (Xi)− µ (Xi)) + (µ̂ (Xi)− µ (Xi))
2

Finally, U is the Ln× 1 vector given by U = (Ũ ′
1, .., Ũ

′̄
L
)′ with

Ũj = (K
1
2
1 Σ1,j(X1)η1, .., K

1
2
n Σ1,j(Xn)ηn)′ ∀j = 1, .., L− 1,

ŨL = (K
1
2
1 σ2(X1)ε1, .., K

1
2
n σ2(Xn)εn)′ and

ŨL = (K
1
2
1 σ2

2(X1) (ε2
1 − 1) , .., K

1
2
n σ2

2(Xn) (ε2
n − 1))′.

The proof proceeds via establishing the validity of the following four lemmata, the first of which

is concerned with the asymptotic behavior of the squared regressor matrix in A.1

Lemma A.1
1

nhd
(IL̄ ⊗ [X′X])

−1 p−→ fX (x0)
−1

[
IL̄ ⊗B−1

]

The second lemma treats the first bias expression:

Lemma A.2

plimn→∞
1

h2

1√
nhd

(IL̄ ⊗ X′)B1 = bias(x0)

The third lemma establishes that the second bias expression vanishes even faster
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Lemma A.3

plimn→∞
1

h2

1√
nhd

(IL̄ ⊗ X′)B2 = 0.

Finally, the last Lemma establishes asymptotic normality for the rhs vector in (A.1).

Lemma A.4
1√
nhd

(IL̄ ⊗ X′)U d−→ N (0, fX (x0) [Ξ(x0)⊗ C]) .

From this Lemmata the result is obvious.

Proof of Lemma A.1. The proof is well-known. In particular, L2 convergence follows by

standard arguments. Q.E.D.

Proof of Lemma A.2. The bias term in (A.1) consists of two types of components. One comes

from differentiating twice w.r.t. the same arguments, one comes from cross differentiating.

Consider the first one first. A typical expression - involving the j-th term, hence the superscript

- is of the form

wjn =
1√
nhd

h2

2

n∑
i=1

(
Qj

i

)2
K(Xi − x0)∂

2
xjm (x0 + hη(x0)

′Qi) ,

where Qj
i = (X j

i −x0)/h and Qi =
(
Q1

i , .., Q
d
i

)
. As an example, take the first element of (Xi−x0),

which is unity. Writing S̄j
ni for the general term under the sum, at each joint continuity point

x of ∂2
xm and f ,

E
[
S̄M+1

ni

]

=

∫

X

(
yj − xj

h

)2

K

(
y − x

h

)
∗

∂2
xjm

(
x−j

0 + η−j(x0)h
(
y−j − x−j

)
, xj

0 + ηj(x0)h
(
yj − xj

))
fX (y)dy

= hd∂2
xjm(x0)µ2 + o(1).

Thus,

E [wjn] =
1√
nhd

nhd+2O(1) =
√

nhd+4O(1),

A similar argument as above can be used in connection with the iid assumption to show that

V [wjn] = o(1). Hence

wjn
P−→ 0, and

√
nhdh−2wjn

P−→ 1

2
∂2

xjm(x)µ2

The same argument holds for any other derivative involving twice differencing w.r.t. to the same

variable. The terms involving cross derivatives vanish even faster with Op(nhd+8). Collecting

terms, the statement follows. Q.E.D.

35



Proof of Lemma A.4

First, recall the notation Xi − x0 = (1, (X 1
i − x1

0) /h, ..,
(X d

i − xd
0

)
/h))′.

We show: (φni,Fni), i = 1, . . . , n, n ≥ 1, with φni =
(
φ′ni1, .., φ

′
niL̄

)′
and

φnij = 1√
nhd

K ((Xi − x0) /h) (Xi − x0) Σ1,j(Xi)ηni, ∀j = 1, .., L− 1,

φniLs = 1√
nhd

K ((Xi − x0) /h) (Xi − x0) σ2(Xi)εni,

φniLs = 1√
nhd

K ((Xi − x0) /h) ((Xi − x0) /h) σ2
2(Xi) (ε2

ni − 1) ,

Fni = Fi,

is a martingale difference array such that

(i) plimn→∞
∑n

i=1 E [φniφ
′
ni|Fi−1] = Ξ(x0)⊗ C,

(ii) plimn→∞
∑n

i=1 E
[‖φni‖2 1{‖φni‖>δ}|Fi−1

]
= 0 for every δ > 0.

The assertion will then follow from a standard central limit theorem for martingale difference

arrays (e.g., Pollard (1984)). Of course, in the present scenario of independent row entries, any

other central limit theorem for such arrays will also do. But the above version easily lends

itself for extension to certain dependence structures, e.g. mixing processes. The martingale

difference is obvious, as to (i), note that

E [φnijφ
′
nik|Fi−1] =

1

nhd
E

[
K2

i (Xi − x0) Σ1,j(Xi)ηniη
′
niΣ

′
1,k(Xi) (Xi − x0)

′ |Fi−1

]

=
1

nhd
K2

i

[
Σjk(Xi)

(
(Xi − x0) (Xi − x0)

′)] ,

where Σjk denotes the jk-th element of Σ1. The same holds for terms involving σ2, σ
2
2. There-

fore, by similar reasoning as above,

n∑
i=1

E {φniφ
′
ni|Fi−1} =

1

nhd

n∑
i=1

K2
i

[
Ξ(Xi)⊗

(
(Xi − x0) (Xi − x0)

′)]

p→ fZ(x0) (Ξ(Xi)⊗ C) .

As to (ii), note first that

n∑
i=1

E
{‖φni‖2 1{‖φni‖>δ}|Fi−1

}

≤
n∑

i=1

E
{

c max
j=1,..,L

‖φnij‖2 1{C max
j=1,..,L

‖φni‖>δ}|Fi−1

}
,

with a suitably defined finite positive constant c. Without loss of generality, assume that the
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max is attained for j = 1. Now, with γn = 1√
nhd

and bni = Ki(Xi − x0), we have

n∑
i=1

E
[
‖φni1‖2 1{ max

j=1,..,L
‖φn1‖>δ/C} |Fi−1

]

= γ2
n

n∑
i=1

E
[||bni||2Σ1,11(Xi)η

2
i 1{||bni||Σ1,11(Xi)|ηi|>δ/Cγn}|Fi−1

]

≤ γ2
n

n∑
i=1

E
[||bni||2Σ1,11(Xi)η

2
i 1{||bni||2Σ1,11(Xi)>δ/Cγn}|Fi−1

]

+ γ2
n

n∑
i=1

E
[
||bni||2Σ1,11(Xi)η

2
i 1{η2

i >δ/Cγn}|Fi−1

]

= γ2
n

n∑
i=1

||bni||2Σ1,11(Xi)1{||bni||2Σ1,11(Xi)>δ/Cγn}

+ γ2
n

n∑
i=1

||bni||2Σ1,11(Xi)E[η2
i 1{η2

i >δ/Cγn}].

Here, for the inequality, we have used the simple fact that |ab| > ε implies a2 > ε or b2 >

ε. Under (A3) the ||bni||2 are zero if Xi is outside a h-neighborhood of x0. Therefore the

||bni||2Σ1,11(Xi) are uniformly bounded by a constant for h small enough, if the realizations of Xi

are continuity points of Σ1,11, and hence the first term eventually becomes zero with probability

one. For the second term, note that by uniform integrability of the η2
i , since γn → 0,

lim
n→∞

sup
i
E[η2

i 1{η2
i >δ/Cγn}] = 0,

and since

γ2
n

n∑
i=1

bnib
′
niΣ1,11(Xi)

p→ V,

where V is a nonrandom matrix, the last term tends to zero in probability as well. Q.E.D.

Proof of Lemma A.3. Returning to the second bias term, this is actually a d + 1 vector, i.e.

1√
nhd

n∑
i=1

Ki (Xi − x0)
[
2Ui (µ̂(Xi)− µ(Xi)) + (µ̂(Xi)− µ(Xi))

2]

=
2√
nhd

n∑
i=1

Ki (Xi − x0) Ui (µ̂(Xi)− µ(Xi))

+
1√
nhd

n∑
i=1

Ki (Xi − x0) (µ̂(Xi)− µ(Xi))
2 .

Consider the second expression first. Take again a typical element, which is

√
n

hd

1

n

n∑
i=1

Ki

(
X j

i − xj
0

h

)s

(µ̂(Xi)− µ(Xi))
2 , j = 0, 1., , .d, s = 0, 1.
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and let D̂n =
1

n

∑n
i=1 Ki

[(
Xj

i − xj
0

)
/h

]2
(µ̂(Xi)− µ(Xi))

2 .

Introduce the notation, Xj
i = Xi, for the j-th component, and X−j

i = Zi for the others. Then,

D̂n

D̂n =

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
[µ̂(x, z)− µ(x, z)]2 dF̂XZ , s = 0, 1.

where F̂XZ is the empirical c.d.f. of Xi and Zi. We follow the proof in Ait-Sahalia, Bickel and

Stoker (2002, ASBS for short). The strategy will be to establish the behavior of the statistic D̂n

which is a functional Γ
(
µ̂, F̂XZ

)
, by studying first the behavior of Dn = Γ (µ̂, FXZ) , and show

then that the difference is asymptotically negligible. As in ASBS we analyze Γ (µ̂, FXZ) using

a functional expansion around Γ (µ, FXZ). Introduce the following notation. Let fJXZ(j, x, z)

denote the joint density of (Ji, Xi, Zi), and let fXZ(x, z) denote the joint density of (Xi, Zi).

Let

f̂JXZ(j, x, z) =
1

nhd+1

n∑
i=1

K

(
Ji − j

h
,
Xi − x

h
,
Zi − z

h

)

denote a Kernel based estimator. Similarly, let

f̂XZ(x, z) =
1

nhd

n∑
i=1

K

(
Xi − x

h
,
Zi − z

h

)

and

µ̂(x, z) =

∫
yf̂JXZ(y, x, z)dy

f̂XZ(x, z)
.

Let

ϕ(t, x, z) =

∫
yfJXZ(y, x, z)dy + t

∫
yg(y, x, z)dy

fXZ(x, z) + tk(x, z)
−

∫
yfJXZ(y, x, z)dy

fXZ(x, z)

=
t
([∫

yg(y, x, z)dy
]
fXZ(x, z)− k(x, z)

∫
yfJXZ(y, x, z)dy

)

fXZ(x, z) [fXZ(x, z) + tk(x, z)]
,

for t ∈ [0, 1] and appropriately defined functions

g(y, x, z) = f̂JXZ(y, x, z)− fJXZ(y, x, z)

and

k(x, z) = f̂XZ(x, z)− fXZ(x, z),

Obviously, ϕ(0, x, z). Moreover,

∂ϕ(t, x, z)

∂t
=

∫
yg(y, x, z)dy (fXZ(x, z) + tk(x, z))

(fXZ(x, z) + tk(x, z))2

−k(x, z)
∫

yfJXZ(y, x, z)dy + t
∫

yg(y, x, z)dy

(fXZ(x, z) + tk(x, z))2

=
fXZ(x, z)

∫
yg(y, x, z)dy − k(x, z)

∫
yfJXZ(y, x, z)dy

(fXZ(x, z) + tk(x, z))2 ,
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∂2ϕ(t, x, z)

∂t2
= −2

{
fXZ(x, z)

∫
yg(y, x, z)dy − k(x, z)

∫
yfJXZ(y, x, z)dy

}
k(x, z)

(fXZ(x, z) + tk(x, z))3 .

Next, define

Ψ(t) =

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
ϕ(t, x, z)2dFXZ , s = 0, 1.

where FXZ is the joint density of Xi and Zi. This implies that

Ψ′(t) =

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
2ϕ(t, x, z)

∂ϕ(t, x, z)

∂t
dFXZ , s = 0, 1,

and

Ψ′′(t) = 2

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×
[
ϕ(t, x, z)

∂2ϕ(t, x, z)

∂t2
+

(
∂ϕ(t, x, z)

∂t

)2
]

dFXZ ,

for s = 0, 1. Note that Ψ(0) = Ψ′(0) = 0 due to ϕ(0, x, z) = 0. Obviously,

Dn = Ψ(1).

Then, by a Taylor-approximation of Ψ around t = 0, we have

Ψ(t) = Ψ(0) + Ψ′(0)t +
1

2
Ψ′′(ϑ(t))t2,

where 0 ≤ ϑ(t) ≤ t. Hence,

Dn =

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
ϕ(ϑ(t), x, z)

∂2ϕ(ϑ(t), x, z)

∂t2
dFXZ

+

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)(
∂ϕ(ϑ(t), x, z)

∂t

)2

dFXZ ,
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for s = 0, 1. Consider the behavior of the second term first

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)(
∂ϕ(ϑ(t), x, z)

∂t

)2

dFXZ

=

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×
(
fXZ(x, z)

∫
yg(y, x, z)dy − k(x, z)

∫
yfJXZ(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ

=

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) (
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ

−2

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×
(
fXZ(x, z)

∫
yg(y, x, z)dy

)
k(x, z)

∫
yfJXZ(y, x, z)dy

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ

+

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) (
k(x, z)

∫
yfJXZ(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ .

All of these three terms are of the same structure. We take the first one as example, the others

follow by similar arguments. Turning, to the first term,

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) (
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ ,

and bounding first the denominator

1

|fXZ(x0, z) + ϑ(t)k(x0, z)| ≤
1

|fXZ(x0, z)| − |k(x0, z)| ≤
2

b
,

since ϑ(t) ∈ [0, 1] , |fXZ(x, z)| ≥ b, since we assume continuously distributed RV with compact

support. Moreover, |k(x, z)| ≤ b/2 with probability approaching one, if f̂XZ(x, z) consistent.

Hence, for s = 0, 1,

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) [∫
yg(y, x, z)dy

]2

[fXZ(x, z) + ϑ(t)k(x, z)]4
(fXZ(x, z))3 dxdz

≤ c1

∫ ∫ ∣∣∣∣
(

x− x0

h

)s∣∣∣∣ K

(
x− x0

h

)
K

(
z − z0

h

)[∫
yg(y, x, z)dy

]2

fXZ(x, z)3dxdz

= hdc1

∫ ∫
|ψ|K (ψ) K (ζ)

[∫
yg(y, ψh + x0, ζh + z0)dy

]2

× (fXZ(ψh + x0, ζh + z0))
3 dψdζ,

where c1, is a constant, and the last equality is by change of variables. Taking the supremum

40



over K and fXZ , the last rhs can be bounded by

hdc2

[∫
yg(y, x0, z0)dy

]2 ∫
|ψ| dψ

+hd+2c3

∫
|ψ|ψ∂x

∫
yg(y, xr, zr)dy

∫
yg(y, xr, zr)dydψ

+hd+2c4

∫
|ψ| ζ

(
Dz

∫
yg(y, xr, zr)dy

)′
ι

∫
yg(y, xr, zr)dydψ.

Since we assumed compact support for X,
∫ |ψ| dψ = c5 < ∞. Defining the seminorm ‖g‖ as

max

{
sup
x,z

∣∣∣∣
∫

yg(x, y, z)dy

∣∣∣∣ , sup
x,z

∣∣∣∣∂x

∫
yg(x, y, z)dy

∣∣∣∣ , sup
x,z

∣∣∣∣∂zj

∫
yg(x, y, z)dy

∣∣∣∣ , ∀j
}

,

we obtain that, for s = 0, 1,

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) (
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
dFXZ = hdOp

(‖g‖2) .

By closer inspection it becomes obvious that every term in (2) has a squared error element,

and hence exhibits the same behavior. Thus, for s = 0, 1,

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)(
∂ϕ(ϑ(t), x, z)

∂t

)2

dFXZ

= hdOp

(‖g‖2) ,

meaning that the behavior of the second element of Dn is clarified. The first and third terms

in (1) are, by similar arguments, actually hdOp

(‖g‖3), so that we conclude that
√

n
hd Dn =√

nhdOp

(‖g‖2). Using standard results, e.g. in Haerdle (1990), we obtain that ‖g‖ = Op(H
r
1 +

n−1/2H
−d/2
1 ln(n)), where H1 is a first step bandwidth, the statement follows if we set H1 =

O(n−1/(d+2r)) and h = O(n−1/(d+4)).

We will show now that D̂n −Dn = hdo
(‖g‖2), and without loss of generality we consider only

the case of a scalar z. Note that since Γ is linear in F ,

D̂n −Dn = Γ
(
µ̂, F̂

)
− Γ (µ̂, F )

= Γ
(
µ̂, F̂ − F

)
.

Therefore, the same expansions as above may be used, with F̂ −F in place of F . In particular,
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Ψ(0) = Ψ′(0) = 0, and hence in the remainder term we are left with

D̂n −Dn =

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×ϕ(ϑ(t), x, z)
∂2ϕ(ϑ(t), x0, z)

∂t2
d

(
F̂XZ − FXZ

)

+

∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×
(

∂ϕ(ϑ(t), x, z)

∂t

)2

d
(
F̂XZ − FXZ

)
,

we are just left with another error in our expression. As a next step, pick again a typical

element. Being more explicit about the boundaries (recall that we have compact support)

∫ z

z

∫ x

x

(
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)

×
(
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
d

(
F̂XZ(x, z)− FXZ(x, z)

)
.

Let

bn(z, x, t) =

(
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

) (
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4
.

Integration by parts yields,

[
bn(z, x, t)

(
F̂XZ(x, z)− FXZ(x, z)

)]x=x,z=z

x=x,z=z

−
∫ z

z

∫ x

x

(
F̂XZ(x, z)− FXZ(x, z)

)
∂x∂zbn(z, x, t)dxdz.

Turning to the first term, this equals

bn(z, x, t)
(
F̂XZ(x, z)− FXZ(x, z)

)

−bn(z, x, t)
(
F̂XZ(x, z)− FXZ(x, z)

)

−bn(z, x, t)
(
F̂XZ(x, z)− FXZ(x, z)

)

+bn(z, x, t)
(
F̂XZ(x, z)− FXZ(x, z)

)
.

Each of these four expressions has the same structure. Since

(
F̂XZ(x, z)− FXZ(x, z)

)
= Op

(
n−1/2

)

by Glivenko-Cantelli, we have

bn(z, x, t)
(
F̂XZ(x, z)− FXZ(x, z)

)
= Op

(∥∥g2
∥∥)

Op

(
n−1/2

)
,
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and the same is true for all other terms. Hence

[
bn(z, x, t)

(
F̂XZ(x, z)− FXZ(x, z)

)]x=x,z=z

x=x,z=z
= Op

(∥∥g2
∥∥)

Op

(
n−1/2

)
.

Now turn to

∫ z

z

∫ x

x

(
F̂XZ(x, z)− FXZ(x, z)

)
∂x∂zbn(z, x, t)dxdz

=

∫ z

z

∫ x

x

K

(
x− x0

h
,
z − z0

h

) (
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4

×
(
F̂XZ(x, z)− FXZ(x, z)

)
dxdz

+

∫ z

z

∫ x

x

∂x∂zK

(
x− x0

h
,
z − z0

h

) (
x− x0

h

)s
(
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4

×
(
F̂XZ(x, z)− FXZ(x, z)

)
dxdz

+

∫ z

z

∫ x

x

K

(
x− x0

h
,
z − z0

h

)(
x− x0

h

)s

∂x∂z

(
fXZ(x, z)

∫
yg(y, x, z)dy

)2

[fXZ(x, z) + ϑ(t)k(x, z)]4

×
(
F̂XZ(x, z)− FXZ(x, z)

)
dxdz

It is tedious but straightforward to show that more or less the same arguments that were used

in bounding Dn may be used again. the only major modification concerns the last term, where

we need the altered seminorm

‖g‖∗ = max

{
sup
x,z

∣∣∣∣∂x∂z

∫
yg(x, y, z)dy

∣∣∣∣ , sup
x,z

∣∣∣∣
∫

yg(x, y, z)dy

∣∣∣∣
}

.

Then, all expressions in (AA.2) are Op

(‖g‖2
∗
)
Op

(
n−1/2

)
.

This establishes that the second part of the second bias term,

1√
nhd

n∑
i=1

Ki (Xi − x0) (µ̂(Xi)− µ(Xi))
2

converges to zero much more rapid then the first part of this bias term. We give now only a

sketch why the same is true for the first expression of the second term, i.e.

2√
nhd

n∑
i=1

KiUi (Xi − x0) (µ̂(Xi)− µ(Xi)) . (4.3)

Note here that, for s = 0, 1,

Dn =

∫ ∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
u [µ̂(x, z)− µ(x, z)] dFUXZ ,
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is zero as
∫

udFU |XZ = 0, provided we use a leave one out estimator, i.e. µ̂ is not a function of

u. Hence, we may directly proceed to D̂n −Dn. Since

Dn =

∫ ∫ ∫ (
x− x0

h

)s

K

(
x− x0

h
,
z − z0

h

)
u [µ̂(x, z)− µ(x, z)] d

(
F̂UXZ − FUXZ

)

Hence we have by similar arguments that Dn = hdOp (‖g‖∗) Op

(
n−1/2

)
, and hence

√
n
hd Dn =√

hdOp(H
r
1 + n−1/2H

−(d+4)/2
1 ln(n)), where H1 is a first step bandwidth, and if we set H1 =

O(n−1/(d+2r+4)) and h = O(n−1/(d+4)),
√

n
hd Dn = op(h

2) for r ≥ 2, d ≥ 3. Q.E.D.

Changes to Proof if Pre-Estimated Regressors are included

In this section we will analyze what happens to the proof above, if pre-estimated regressors are

being used. In our scenario, only the pre-estimated residuals of the L-th equation (the regression

of endogenous variables on instruments) matter, namely Ui = Xi−µ(Zi) are replaced by Uni =

Xi− µ̂(Zi), where µ̂ denotes a Nadaraya Watson pre-estimator. Hence, Ui = Uni + (µ̂i − µi) in

an obvious notation.

Throughout this subsection, we will employ the following assumption:

Assumption A.1 In the estimation of µ̂i we use a fourth order Kernel. Also, assume that

µ be four times continuously differentiable.

Finally, recall the expansion

Kni(x0, u0) = K

(Xi − x0

h

)
K

(
Uni − u0

h

)

= K

(Xi − x0

h

)
K

(
Ui − u0

h

)

+K

(Xi − x0

h

)
K ′

(
Ui − u0

h

)
µi − µ̂i

h

+
1

2
Ki

(Xi − x0

h

)
K ′′

i

(
Ui − u0

h
+ λ

[
µi − µ̂i

h
+

Ui − u0

h

])(
µi − µ̂i

h

)2

.

Assumption A.2 K
(

Uni−u0

h

)
has bounded first and second derivatives.

Changes to Lemma A.1: Let

X′X =

[ ∑n
i=1 Kni (Xi − x0) (Xi − x0)

′ /h2
∑n

i=1 Kni (Xi − x0) (Uni − u0) /h2

∑n
i=1 Kni (Uni − u0) (Xi − x0)

′ /h2
∑n

i=1 Kni (Uni − u0)
2 /h2

]
,

where Kni = Kni(x0, u0) = K
(Xi−x0

h

)
K

(
Ui−u0

h

)
. As noted in the heuristic in appendix A1, this
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leads to each element in this matrix being the sum of two types of expressions. For instance,

n∑
i=1

Kni(x0, u0) (Uni − u0) /h

=
n∑

i=1

K

(Xi − x0

h

)
K

(
Ui − u0

h

)
(Ui − u0) /h

+
n∑

i=1

K

(Xi − x0

h

)
K

(
Ui − u0

h

)
Ui − u0

h

µi − µ̂i

h

+
n∑

i=1

K

(Xi − x0

h

)
K ′

(
Ui − u0

h

)
Ui − u0

h

µi − µ̂i

h
+ ...

The leading term in this sum was already treated. Any other term in this sum, and indeed in

X′X, is of the form

M̂n,g =
n∑

i=1

K

(Xi − x0

h

)
K(a)

(
Ui − u0

h

)(
Ui − u0

h

)b (Xi − x0

h

)c (
µi − µ̂i

h

)g

,

where a, b, c ∈ {0, 1, 2} and g ∈ {1, 2, 3, 4} . To treat this expression, take first the terms

involving differences between µi− µ̂i of quadratic order. Then it is obvious that
(
nhd

)−1
M̂n,g =

h−dh−2D̂n, where D̂n is as in L.A.3 above, and exactly the same arguments apply. Terms of

higher order in ((µi − µ̂i) /h) are actually more benign, because ‖µi − µ̂i‖ = op(h). In contrast,

more problematic are terms that are linear in ((µi − µ̂i) /h) .

Nevertheless, we can treat this object by the same arguments as in L.A.3. Then we obtain

that

(
nhd

)−1
M̂n,1 = h−dhd−2Op (‖g‖)

= h−2Op(H
r
1 + n−1/2H

−d/2
1 ln(n))

= op(1),

if H1 = O(n−1/(d+2r)), h = O(n−1/(d+4)) and r > 2. Hence, Lemma A.1 continues to hold with,

say, a fourth order Kernel. Q.E.D.

Changes to Lemma A.2: Consider again the typical expression, and the worst case, i.e.

((µi − µ̂i) /h) enters linearly. The question becomes, how
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1√
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where KX iK
′
Ui = K

(Xi−x0

h

)
K ′ (Ui−u0

h

)
. Taking again the first element of (Xi−x0), i.e. the con-

stant, we obtain by now familiar arguments that Ĉjn behaves like
√

nhd+2Op(H
r
1+n−1/2H

−d/2
1 ln(n)) =
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op(1) if H1 = O(n−1/(d+2r)), h = O(n−1/(d+4)), and r ≥ 2. Q.E.D.

Changes to Lemma A.3: The results continue to hold, because a typical expression under

the sum is multiplied by powers of ((µi − µ̂i) /h) , which are all op(1). Q.E.D.

Changes to Lemma A.4: Finally, we have to determine, under what conditions

(√
nhd

)−1

B3 =
(√

nhd
)−1 [

(I2 ⊗ X′)U− [(I2 ⊗ X′)U]
∗]

,

as defined in appendix 1, will tend to zero in probability. A typiacl element in this expression

is

Ĵn,g =
1

n

n∑
i=1

K

(Xi − x0

h

)
K(a)

(
Ui − u0

h

)
σl (Xi) ζ(εi)

×
(

Ui − u0

h

)b (Xi − x0

h

)c (
µi − µ̂i

h

)g

a, b, c ∈ {0, 1, 2}, l ∈ {1, 2} g ∈ {1, 2, 3, 4} , ζ(x) = x or x2−1, and E [ζ(εi)|Xi, Ui] = 0. Consider

again the linear in ((µi − µ̂i) /h) , and a = 1, b = c = 0. Using
∫

εdFε|X ,U = 0, we have by similar

arguments as were used for the second term in L.A.3, that Ĵn,1 = hd−1Op

(
n−1/2

)
Op (‖g‖∗) .

Then, √
n

hd
Ĵn,g =

√
hd−2Op(H

r
1 + n−1/2H

−(d+4)/2
1 ln(n)).

Choosing again optimal bandwidths, i.e. H1 = O(n−1/(d+2r+4)), h = O(n−1/(d+4)), for r = 4,

and d ≥ 3 we have
√

n
hd Ĵn,g = op(h

2). If d = 2, we have that
√

n
hd Ĵn,g = op(h), for r = 4, but

this produces a new leading bias term. Q.E.D.
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