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Abstract: Capacity Management, Decentralization, and Internal Pricing

This paper studies the acquisition and subsequent utilization of production capacity in a

decentralized firm comprised of multiple divisions. A central issue in our analysis is whether

one or several of the divisions should be structured as investment centers with comprehensive

responsibility for acquiring new capacity assets and maintaining existing ones. Ownership

of capacity assets may alternatively be centralized, with the provision that the divisions rent

capacity from a central unit on a period-by-period basis. The structure of responsibility

centers is naturally related to the choice of internal pricing rules for capacity services. We

find that an investment center arrangement combined with transfer prices set at full historical

cost is efficient if in the short run there is effectively no flexibility in the divisional capacity

assignments. In contrast, capacity may be fungible in the sense that even in the short-run the

aggregate capacity available can be reassigned in response to fluctuations in the divisional

revenues. When capacity is fungible, we identify the advantages of centralized capacity

ownership. We also find that under certain conditions a system of negotiated transfer pricing

is preferable to cost-based prices because negotiation leads to better coordination of the

divisional capacity choices.



1 Introduction

A significant portion of firms’ investment expenditures pertain to investments in production

capacity. One distinctive characteristic of investments in plant and equipment is that they

are long-lived and irreversible. Once the investment expenditure has been incurred, it is

usually sunk due to a lack of markets for used assets. The longevity of capacity investments

also causes their profitability to be subject to significant uncertainty. Fluctuations in the

business environment over time make it generally difficult to predict at the outset whether

additional capacity will be fully utilized and, if so, how valuable it will be.1

The acquisition of new capacity and its subsequent utilization is an even more challeng-

ing issue for firms that comprise multiple business units. A prototypical example involves

an upstream division which acquires production capacity for its own use and that of one

or several downstream divisions which receive manufacturing services from the upstream

division. Potential fluctuations in the revenues attainable to the individual divisions make it

essential to have a coordination mechanism for balancing the firm-wide demands on capacity.

Any such capacity management system must specify “control rights” over existing capac-

ity, responsibility for acquiring new capacity and internal pricing rules to support intrafirm

transactions.2

In our model of a two-divisional firm, an upstream division installs and maintains the

firm’s assets that create production capacity. This arrangement may reflect technical ex-

pertise on the part of the upstream division. One natural responsibility center arrangement

therefore is to make the upstream division an investment center. Thus, capacity related

assets are recorded on the balance sheet of the upstream division, while the downstream

division is structured as a profit center that rents capacity from its sister division. As a

benchmark result, we identify conditions for such a decentralized structure to result in ef-

1Capacity choice under uncertainty has been a topic of extensive research in operations management.
Traditionally, most of this literature has focused on the problem faced by a single decision-maker seeking to
optimize a single investment decision. More recent work has addressed the question of capacity management
in multi-agent and multi-period environments; see, for example, Porteus and Whang (1991), Kouvelis and
Lariviere (2000) and Van Mieghem (2003). The work by Plambeck and Taylor (2005) on the incentives of
contract manufacturers is in several respects closest in spirit to our study.

2The case study by Bastian and Reichelstein (2004) illustrates coordination issues related to capacity
utilization at a bearings manufacturer. Martinez-Jerez (2007) describes a new customer profitability mea-
surement system at Charles Schwab. A central issue for the company is how different user groups should be
charged for IT related capacity costs.
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ficient outcomes provided the downstream division rents capacity in each period at a full

cost transfer price which includes depreciation and imputed capital charges for past capacity

investments. Specifically, our benchmark result shows that the multi-period game corre-

sponding to this organizational structure has a unique equilibrium with the property that

each division’s capacity usage is efficient from the firm-wide perspective.

The common reliance on full-cost (transfer) pricing in practice has been a challenge for

research in managerial accounting. In most model settings, the use of full-cost prices is

predicted to result in double-marginalization.3 The key to the efficiency of full-cost prices

in our framework is that the firm makes a sequence of overlapping capacity investments. As

shown by Arrow (1964), this dynamic structure makes it possible to identify the marginal

cost of one unit capacity for one period of time, despite the inherent jointness that results

when each investment creates productive capacity for multiple periods.

Recent work by Rogerson (2008) has shown that the marginal cost of capacity can be

captured precisely by a particular set of historical cost charges. Investment expenditures

can be allocated over time so that the sum of depreciation charges and imputed interest on

the book value of assets is exactly equal to the marginal cost of another unit of capacity

in that period. This equivalence requires that investment expenditures be apportioned over

time according to what we term the Relative Practical Capacity rule. Accordingly, the

expenditure for new assets is apportioned in proportion to the capacity available in a given

period, relative to the total (discounted) capacity generated over the life of the asset.4 The

resulting historical cost charges can also be viewed as competitive rental prices: a firm that

acquires capacity and then hypothetically rents it out to third parties on a periodic basis

would charge these prices if its business is subject to a zero-profit constraint. Thus, the effect

of proper intertemporal cost allocations, coupled with full cost transfer prices, is that both

divisions are effectively charged the competitive rental prices for capacity in each period.

Our benchmark result on the efficiency of full cost transfer pricing for capacity transfers

is obtained in a setting where both divisions’ capacity usage is determined at the beginning

3See, for instance, Balakrishnan and Sivaramakrishnan (2002), Goex (2002), Sahay (2003), Wei (2004)
and Pfeiffer et al. (2007).

4The Relative Practical Capacity rule is conceptually similar to the so-called Relative Benefit Rule (Roger-
son, 1997), which has played a prominent rule in the literature on performance measurement for investment
projects. As the name suggests, though, the relative benefit rule applies to generic investment projects and
seeks to match expected future cash inflows with a share of the investment expenditure.
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of each period. In contrast to such a setting of dedicated capacity, there may be enough

flexibility to redeploy the aggregate capacity that is available in the short run, once the

divisional managers have received updated information on the revenue opportunities of their

respective divisions. When capacity is fungible, it is natural to allow the divisional managers

to negotiate an adjustment to the initial capacity rights. We refer to the resulting mechanism

as adjustable full cost transfer pricing.

By giving divisional managers discretion to negotiate a reallocation of the initial capacity

rights, the firm captures trading gains that arise from fluctuations in the divisional revenues.

At the same time, we find that the resulting system of adjustable full cost transfer pricing

subjects the upstream division to a dynamic holdup problem. Since the downstream division

only rents capacity in each period, it may have an incentive to drive up its capacity demands

opportunistically in one period in anticipation of obtaining the corresponding excess capacity

at a low cost through negotiations in future periods. In essence, this dynamic hold-up

problem reflects that the downstream division is not accountable for the long-term effect

of irreversible capacity demands, yet as an investment center the upstream division cannot

divest itself from the corresponding assets and the corresponding fixed cost charges.

To counteract the dynamic hold-up problem described above, the firm may centralize the

ownership of capacity assets and regard both divisions as profit centers that with discretion

to secure capacity for themselves at the competitive rental price. Since the central office

can commit to a policy of full cost transfer pricing, neither division can game the system by

securing excessive amounts of capacity. Nonetheless, we identify a coordination problem in

the divisional capacity requests. While each division correctly internalizes the incremental

cost of additional capacity, the corresponding benefits at the divisional level will generally

not coincide with the overall benefit to the firm.

Under the rule of adjustable full cost transfer pricing, divisional incentives to secure

capacity unilaterally arise from two sources: the autonomous use of capacity and a share

of the overall firm-wide revenue that is obtained through negotiated adjustments. We find

that the resulting divisional incentives are congruent with the firm-wide objective only in

exceptional cases, e.g., the divisional revenue functions can be described by a quadratic

function. Yet, in general there will be distortions which can bias the divisional decisions

in either direction. In particular, we identify conditions for a system of adjustable full cost
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transfer pricing (with centralized capacity ownership) to result in over-investment of capacity.

This result stands in contrast to earlier incomplete contracting models on transfer pricing.5

Our findings provide a rationale for the central office to require that the two divisions

coordinate their capacity decisions. One approach to achieving coordination is to require that

capacity rights for the downstream division cannot be secured unilaterally but must result

from a mutually acceptable negotiation with the other division. Effectively, the upstream

division becomes a “gatekeeper” who must approve capacity assignments to the downstream

division. The divisions will then have congruent objectives to set the downstream division’s

capacity assignment at a level which subsequently leads the upstream division to implement a

capacity level that is efficient from a firm-wide perspective.6 As a consequence, the negotiated

transfer price for a unit of capacity will be different from the marginal cost to the firm, yet

the resulting capacity investments will nonetheless be efficient.7

The conclusion that a negotiated capacity management system will efficiently coordi-

nate the divisional capacity choices is broadly consistent with the findings in Edlin and

Reichelstein (1995) and Wielenberg (2000). A complicating issue in these earlier studies on

negotiated transfer pricing is that investments are non-verifiable for contracting purposes.8

As a consequence, the parties have to contract on a “surrogate” variable such as the quan-

tity or quality of a product to be traded. Clearly, this issue does not arise in our framework

where ex-ante agreements pertain to verifiable capacity rights. The main advantage of re-

quiring the downstream division to “clear” its capacity choice with the upstream division is

improved coordination. The implied efficiency advantage of negotiated transfer pricing must,

of course, be weighed against other factors not accounted for in our analysis. These include

5See, for instance, such as Baldenius et al (1999), Anctil and Dutta (1999), Sahay (2003), Wei (2004)
and Pfeiffer et al. (2008). In these models the divisions make relationship specific investments that have
no value to the investor if the parties do not engage in trade, e.g., the upstream division lowers the unit
cost of producing the intermediate product in question. As a consequence, the collective problem is one of
mitigating hold-ups and avoiding under-investment.

6Without the ability of the downstream division to secure capacity, the upstream division would under-
invest, as it would anticipate being held up in the subsequent negotiation.

7The notion that firms may want to bias internal prices deliberately is central to the literature on “strate-
gic” transfer prices; see, for example Hughes and Kao (1997), Alles and Datar (1998) and Arya and Mittendorf
(2008). In these studies, however, it is a central planner who “distorts” the internal price in order to achieve
pre-commitment in the firm’s competition with external rivals.

8This specification is, of course, crucial to most studies on incomplete contracting, including the pioneering
contributions by Williamson (1985) and Grossman and Hart (1988). Tirole (2003) provides a survey of more
recent contributions.

4



the cost of “haggling” and more stringent assumptions of symmetric information across the

two divisions.

The remainder of the paper is organized as follows. The model is described in Section

2. Section 3 examines cost-based transfer pricing under the assumption that the upstream

division is an investment center that “owns” the capacity assets. Section 4, considers an

alternative organizational structure of centralized capacity ownership. We first examine the

incentive properties of a cost-based transfer pricing and its possible distortions, and then

investigate the efficiency of negotiated transfer pricing which makes the upstream division

effectively a gatekeeper for new capacity acquisitions. Extensions of our basic model are

provided in Section 5 and we conclude in Section 6.

2 Model Description

Consider a decentralized firm comprised of two divisions and a central office. The two

divisions use a collection of common capital assets (capacity) to produce their respective

outputs. Because of technical expertise, only the upstream division (Division 1) is in a

position to install and maintain the entire productive capacity for both divisions. Our

analysis therefore considers initially an organizational structure which views the upstream

division as an investment center whose balance sheet reflects the historical cost of past

capacity investments. In contrast, the downstream division (Division 2) is evaluated as a

profit center.

Capacity could be measured either in hours or the amount of output produced. New

capacity can be acquired at the beginning of each period. It is commonly known that the

unit cost of capacity is v . Therefore, the cash expenditure of acquiring bt−1 units of capacity

at date t− 1, the beginning of period t , is given by:

Ct = v · bt−1.

For reasons of notational and expositional parsimony, we assume that assets have a useful

life of n = 2 periods. As argued in Section 5 below, all our results would be unchanged for

a general useful life of n periods. If bt−1 units of capacity are installed at date t − 1,

they become fully functional at date t . At the same time, the practical capacity declines
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to bt−1 · β at date t + 1. Thus, β ≤ 1 denotes the rate at which the productivity of new

capacity declines, possibly due to increased maintenance requirements. The capacity stock

available for production in period t is therefore given by:

kt = bt−1 + β · bt−2, (1)

with k0 = 0. The total capacity available at the beginning of a period can be used by either

of the two divisions. While Division 1 has control rights over this capacity, the internal

pricing mechanisms we study in this paper allow the downstream division to secure capacity

rights in each period, prior to the upstream division deciding on new acquisitions. By k2t

we denote the amount of capacity that Division 2 has reserved for itself in period t . By

definition, k1t = kt − k2t.

The actual capacity levels made available to the divisions are denoted by qit . They may

differ from the initial rights kit to the extent that the two divisions can still trade capacity

within a period. If qit units of capacity are ultimately available to Division i in period t ,

the corresponding net-revenue is given by Ri(qit, θit, εit).9 The divisional revenue functions

are parameterized by the random vector (θit, εit), where the random vector θt ≡ (θ1t, θ2t) is

realized at the beginning of period t before the divisions choose their capacity levels for that

period, while the random variables εt ≡ (ε1t, ε2t) represent transitory shocks to the divisional

revenues. These shocks materialize after the capacity for period t has been decided.

The net-revenue functions Ri(qit, θit, εit) are assumed to be increasing and concave in qit

for each i and each t . At the same time, the marginal revenue functions:

R
′

i(q, θit, εit) ≡
∂Ri(q, θit, εit)

∂q

are assumed to be increasing in both θit and εit .
10 The random variables θt ’s may be

serially correlated. However, the transitory shocks {εit} are assumed to be identically and

independently distributed across time; i.e., Cov(εit, εiτ ) = 0 for each t 6= τ , though in

9If one thinks of qit as the amount of output produced for Division i , then the net-revenue Ri(·) includes
all variable costs of production.

10The specification that R
′

i(·) > 0 is always positive reflects that the divisions are assumed to derive
positive“salvage value” from their capacity, even beyond the point where they obtain positive contribution
margins from their products. We note that this specification is convenient technically, though all of our
results still hold if the marginal net-revenues were to drop to zero for qi sufficiently large.
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any given period these shocks may be correlated across divisions; i.e., it is possible to have

Cov(ε1t, ε2t) 6= 0.

One maintained assumption of our model is that the path of efficient investment levels has

the property that the firm expects not to have excess capacity. Formally, this condition will

be met if the productivity parameters are increasing for sure over time, that is: θi,t+1 ≥ θit

for all t .11 As a consequence, the expected marginal revenues are nondecreasing over time,

that is:

Eεi [R
′

i(q, θi,t+1, εi,t+1)] ≥ Eεi [R
′

i(q, θit, εit)], (2)

for all q ≥ 0 while the realized marginal revenues R
′
i(q, θit, εit) may fluctuate across periods.

At the beginning of period t , both managers observe the realization of the state vector

θt = (θ1t, θ2t).12 This information is not available to the central office and provides the basic

rationale for delegating the investment decisions. Given the realization of the information

parameters θt , Division 2 can secure capacity rights, k2t , for its own use in the current

period. Thereafter Division 1 proceeds with the acquisition of new capacity bt−1 .

Capacity is considered fixed in the short run and therefore it is too late to increase

capacity for the current period, once the demand shock εt has been realized. However,

in what we term the fungible capacity scenario, it is still possible for the two divisions to

negotiate an allocation of the currently available capacity kt ≡ k1t +k2t . Let (q1t, q2t)denote

the renegotiated capacity levels, with q1t + q2t = kt . In contrast, the scenario of dedicated

capacity presumes that the initial capacity assignments made at the beginning of each period

cannot be changed because of longer lead times. Figure 1 depicts the sequence of events in

a given period.

t−1

θt
realized

Div. 2
secures k2t

Div. 1
chooses bt−1

εt
realized

Capacity

allocation
Production

& sales
Revenues
realized

t

Figure 1: Events in Period t

11For instance, θ may experience consistent growth such that θt+1 = θt · (1 + λt) and the support of λt

is a subset of the non-negative real numbers.
12As argued below, some of our results remain valid in their current form if the divisional managers have

private information about their own division’s revenue.
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The main part of our analysis ignores issues of moral hazard and compensation and

instead focuses on the choice of goal congruent performance measures for the divisions.

Following the terminology in earlier literature, a performance measure is said to be goal

congruent if it induces managers to make decisions that maximize the present value of firm-

wide cash flows. In our search for goal congruent performance measures, we take it as given

that the downstream division is evaluated on the basis of its operating income which consists

of its net-revenue, R2(·), less an internal transfer payment for the capacity service it receives

from the other division. In contrast, the upstream division is initially assumed to be an

investment center, its financial performance is assumed to be measured by residual income:

π1t = Inc1t − r · A1,t−1. (3)

Here A1t denotes book value of capacity related assets at the end of period t , and r denotes

the firm’s cost of capital. The corresponding discount factor is denoted by γ ≡ (1 + r)−1 .

The upstream division’s measure of income is based on two accruals: the transfer price re-

ceived from the downstream division and depreciation charges for past capacity investments.

The depreciation schedule must satisfy the usual tidiness requirement that the depreciation

charges over an asset’s useful life add up to the asset’s acquisition cost. We let the parameter

d represent the depreciation charge at date t per dollar of capacity investment undertaken

at date t− 1. The remaining book value v · bt−1 · (1− d) will be depreciated at date t+ 1.

Thus, the total depreciation charge for Division 1 in period t can be written as:

Dt = c · [bt−1 · d+ bt−2 · (1− d)], (4)

and the historical cost value of the net assets at the end of period t is given by:

A1t = v · [bt + (1− d) · bt−1]. (5)

To achieve goal congruence, performance measures are required to be robust in the sense

that the desired incentives hold regardless of the relative bargaining powers of the two man-

agers and even if divisional managers attach weights to future outcomes that differ from those

of the firm. Let ui = (ui1, ..., uiT ) denote non-negative weights that manager i attaches to

the sequence of performance measures πi = (π1i, ..., πiT ). At the beginning of period 1,

manager i ’s objective function can thus be written as
∑T

t=1 uit ·E[πit]. One can think of the
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weights ui as reflecting a manager’s discount factor as well as the bonus coefficients attached

to the periodic performance measures. We require goal congruence for all ui in some open

set in Vi ⊂ RT
+ . For instance, Vi could be a neighborhood around (u · γ, u · γ2, ..., u · γT ) for

some constant bonus coefficient u . Since the transfer pricing policies examined in this paper

are based on different behavioral assumptions, including cooperative and non-cooperative

notions of equilibrium, we defer the formal definition of strong goal congruence to later

sections.

3 Decentralized Capacity Ownership

This section examines an organizational structure in which the upstream division is struc-

tured as an investment center. Accordingly, that division is in charge of all capacity invest-

ment decisions and its balance sheet reflects the historical cost of assets acquired in previous

periods. In contrast, the downstream division rents capacity from the upstream division on

a period-by-period basis. We initially focus on pricing rules which allow the downstream

division to secure capacity at a price given by the full cost of capacity, comprised of his-

torical depreciation charges plus imputed interest. In settings where the upstream division

not only provides capacity services but also manufactures an intermediate product for the

downstream division, the full cost transfer price would also include applicable variable costs

associated with the intermediate product. Such an internal pricing rule appears consistent

with the practice of full cost transfer pricing that features prominently in most surveys on

transfer pricing.13

We first examine a scenario of dedicated capacity, in which the random shocks εt are

realized so late in period t that it is impossible for the divisions to redeploy the available

capacity stock kt . Consequently, Division i ’s initial capacity assignment kit , made at the

beginning of period t , is also equal to the capacity ultimately available for its use in that

period. Put differently, capacity assignments can only be altered at the beginning of each

period, but not within a period.

The firm is a going concern that seeks a path of efficient investment and capacity levels so

as to maximize the stream of discounted future cash flows. If a central planner hypothetically

13See, for instance, Schnell (1995), Merchant (2000), Ernst & Young (2003) and Tang (2002).
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had the entire information available to the divisional managers, the investment decisions

b ≡ (b0, b1, b2, ...) would be chosen so as to maximize the net present value of the firm’s

expected future cash flows:

Πd(b) =
∞∑
t=1

[Md(bt−1 + β · bt−2, θt)− v · bt] · γt,

subject to the non-negativity constraints bt ≥ 0. Here, Md(bt−1 + β · bt−2, θt) denotes the

maximized value of the firm-wide contribution margin:

Eε [R1(k1t, θ1t, ε1t) +R2(k2t, θ2t, ε2t)] ,

subject to the constraint that k1t + k2t ≤ bt−1 + β · bt−2 .

Lemma 1 When capacity is dedicated, the optimal capacity levels, (k̄o1t, k̄
o
2t), are given by:

Eεi

[
R
′

i(k̄
o
it, θit, εit)

]
= c, (6)

where

c =
v

γ + γ2 · β
. (7)

Proof: All proofs are in the Appendix.

Lemma 1 shows that in the dedicated capacity scenario the firm’s optimization problem

is separable not only cross-sectionally across the two divisions, but also intertemporally.14

The non-negativity constraints for new investments, bt ≥ 0, will not bind provided the

corresponding sequence of capacity levels k = (k1, k2, ...) satisfy the monotonicity require-

ment kt+1 ≥ kt for all t . This latter condition will be met whenever the expected marginal

revenues satisfy the monotonicity condition in (2).

Lemma 1 identifies c as the effective long-run marginal cost of capacity. To provide

intuition for this characterization, Arrow (1964) and Rogerson (2008) note that the firm can

increase its capacity at date t by one unit without affecting its capacity levels in subsequent

periods through the following “reshuffling” of future capacity acquisitions: buy one more

unit of capacity at date t− 1, buy β unit less in period t , buy β2 more unit in period t+ 1,

14The statement in Lemma 1 assumes implicitly that k̄o
it > 0. A sufficient condition for this to hold is the

following boundary condition: R
′

i(0, θit, εit) > c for all θit, εit .
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and so on. The cost of this variation, evaluated in terms of its present value as of date t−1,

is given by:

v ·
[
1− γ · β + γ2 · β2 − γ3 · β3 + γ4 · β4 . . .

]
= v · 1

1 + γ · β
,

and therefore the present value of the variation at date t is:

(1 + r) · v · 1

1 + γ · β
≡ c.

Hence, c is the marginal cost of one unit of capacity made available for one period of time.15

It is useful to note that c is exactly the price that a hypothetical supplier would charge for

renting out capacity for one period of time, if the rental business is constrained to make

zero economic profit. Accordingly, we will also refer to c as the competitive rental price of

capacity.

In the context of a single division, Rogerson (2008) has identified depreciation rules

that result in goal congruence with regard to a sequence of overlapping investment projects.

Rogerson shows that the depreciation schedule can be set in such a manner that the historical

cost charge (the sum of depreciation and imputed interest charges) for one unit of capacity

in each period is precisely equal to c , the marginal cost of capacity derived in Lemma 1.

Let zt−1,t denote the historical cost charge in period t per dollar of capacity investment

undertaken at date t − 1. It consists of the first-period depreciation percentage d and the

capital charge r applied to the initial expenditure required for one unit of capacity. Thus:

zt−1,t = v · (d+ r).

Accordingly, zt−2,t denotes the cost charge in period t per dollar of capacity investment

undertaken at date t− 2, and:

zt−2,t = v · [(1− d) + r · (1− d)].

The total historical cost charge to Division 1’ residual income measure in period t then

becomes

15We recall that for an additional unit of capacity to be available at date t the corresponding investment
expenditure, v , is incurred at date t−1. As one would expect, its compounded value (1 + r) ·v , exceeds the
date t marginal cost of one unit of capacity, i.e., c . As shown in Section 5 below, the gap between (1 + r) · v
and c widens as the useful life of investment increases from 2 to T periods.
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zt ≡ zt−1,t · bt−1 + zt−2,t · bt−2.

Division 1 will internalize a unit cost of capacity equal to the firm’s marginal cost c , provided

zt = c · (bt−1 + β · bt−2) = c · kt.

Straightforward algebra shows that there is a unique depreciation percentage d that

achieves the desired intertemporal cost allocation of investment expenditures. This value of

d is given by:

d =
1

γ + γ2 · β
− r. (8)

We note that 0 < d < 1 and:

(zt−2,t, zt−1,t) =

(
β · v

γ + γ2 · β
,

v

γ + γ2 · β

)
= (β · c, c). (9)

Thus the historical cost charge per unit of capacity is indeed c in each period. The above

intertemporal cost charges have been referred to as the Relative Practical Capacity Rule since

the expenditure required to acquire one unit of capacity is apportioned over the next two

periods in proportion to the capacity created for that period, relative to the total discounted

capacity levels.16 We note in passing that the depreciation schedule corresponding to the

Relative Practical Capacity rule will coincide with straight line depreciation exactly when

β = 1+r
1+2r

. For instance, if r = .1, the Relative Practical Capacity Rule amounts to straight

line depreciation if the practical capacity in the second period declines to 91%.

To summarize, if the firm depreciates investments according to the Relative Practical

Capacity rule and the transfer price charged to Division 2 is based on full cost (which

16The term Relative Practical Capacity Rule has been coined in Rajan and Reichelstein (2008), while
Rogerson (2008) refers to the Relative Replacement Cost rule to reflect that in his model the cost of new
investments falls over time. It should be noted that under the Relative Practical Capacity rule the depre-
ciation charges are not based on the relative magnitude of expected future cash inflows resulting from an
investment. The link to expected future cash flows is a crucial ingredient in the Relative Benefit Allocation
Rule proposed by Rogerson (1997), the economic depreciation rule proposed by Hotelling (1925) and the
neutral depreciation rule advocated by Beaver and Dukes (1974). As demonstrated in Rajan and Reichelstein
(2008) these depreciation rules are generally different, though they coincide in certain special cases, most
notably if all investments have zero-NPV.
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includes the imputed interest charges), then both divisions will be charged the competitive

rental price c per unit of capacity in each period. The key difference between the two

divisions is that while the downstream division can rent capacity on as needed basis, capacity

investments entail a multiperiod commitment for the upstream division. In making its

capacity investment decision in the current period, the upstream division has to take into

account the resulting historical cost charges that will be deducted from its performance

measures in future periods. Given the weights ut that the divisions attach to their periodic

performance measures, we then obtain a multi-stage game in which each division makes one

move in each period; i.e., each division chooses its capacity level. We say that a performance

measurement system attains strong goal congruence if the resulting game has a subgame

perfect equilibrium in which the divisions choose first-best capacity levels in each period.

Proposition 1 When capacity is dedicated, full cost transfer pricing achieves strong goal

congruence.

As demonstrated in the proof of Proposition 1, the divisional managers face a T-period

game which has a unique subgame perfect equilibrium.17 Irrespective of past decisions, the

downstream division will secure a capacity level that is optimal in the short-term, relative

to the unit cost c . The upstream division potentially faces the constraint that, in any given

period, it may inherit more capacity from past investment decisions than it currently needs.

However, provided the divisions’ marginal revenues are increasing over time; i.e., condition

(2) is met, the requirement of sequential optimality embodied in the concept of subgame

perfection implies that, in equilibrium, the upstream division will not find itself in a position

with excess capacity.18

The result in Proposition 1 makes a strong case for full-cost transfer pricing, i.e., a transfer

price that comprises variable production costs (effectively set to zero in our model) plus the

allocated historical cost of capacity, c . Survey evidence indicates that in practice full cost

17The game has other, non-perfect Nash equilibria which result in inefficient capacity levels.
18We note that the result in Proposition 1 does not require the division managers to have symmetric

information with regard to θit . It suffices for each manager to know his own θit , since the optimal capacity
acquisitions are separable across the two divisions. With private information, the formal claim in Proposition
1 needs to be modified since there are no proper subgames. However, the concept of subgame perfect
equilibrium could be replaced by another concept requiring sequential rationality, such as Bayesian Perfect
equilibrium.
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is the most prevalent approach to setting internal prices. In our model, the full cost rule

leaves the upstream division with zero economic (residual) profit on internal transactions

and, at the same time, provides a goal congruent valuation for the downstream division in

its demand for capacity.

As argued by Balakrishnan and Sivaramakrishnan (2002), Goex (2002) and others, it

has been difficult for the academic accounting literature to justify the concept of full-cost

transfers. Most existing models have focused on one-period settings in which capacity costs

were taken as fixed and exogenous. As a consequence, full-cost mechanisms typically run

into the problem of double marginalization; that is, the buying entity internalizes a unit cost

that exceeds the marginal cost to the firm. Some authors, including Zimmerman (1979),

have suggested that fixed cost charges are effective proxies for opportunity costs arising

from capacity constraints. In the context of a single capacity investment, however, there

is no reason to believe that historical fixed cost charges relate systematically to current

opportunity costs.19

Our rationale for the use of full cost transfer prices hinges crucially on the dynamic of

overlapping capacity investments. Since the firm expects to operate at capacity, divisional

managers should internalize the incremental cost of capacity; i.e., the unit cost c . The

Relative Practical Capacity depreciation rule ensures that the unit cost of both incumbent

and new capacity is valued at c in each period. As a consequence, the historical fixed

cost charges can be “unitized” without running into a double marginalization problem with

regard to the acquisition of new capacity.20

We now relax the specification of dedicated capacity which assumes that capacity usage

for each division must be decided at the beginning of the period. A plausible alternative

scenario is that the demand shocks εt are realized relatively early during the period and the

19Banker and Hughes (1994) examine the relationship between support activity costs and optimal output
prices in a classic one period news-vendor setting. Capacity is not a committed resource in their setting,
since it is chosen after the output price has been decided. Consequently, they find that the marginal cost of
capacity is relevant for the subsequent pricing decision. It should be noted that the primary focus of Banker
and Hughes (1994) is not on whether full cost are a relevant input in the firm’s pricing decision. Instead, they
model multiple support activities and show that an activity-based measure of unit cost provides economically
sufficient information for pricing decisions.

20In contrast, fixed cost charges must be imposed as lump-sum charges in Wei (2000) in order to satisfy
two simultaneous objectives: (i) provide divisional managers with an upfront incentive to reduce variable
cost in future periods and (ii) ensure efficient internal transfers of goods and services in future periods.
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production processes of the two divisions have enough commonalities so that the divisional

capacity uses remain fungible. While the total capacity, kt , is determined at the beginning

of period t , this resource can be reallocated following the realization of the random shocks

εt . To that end, we assume that the two divisions are free to negotiate an outcome that

maximizes the total revenue available,
∑2

i=1Ri(qit, θit, ε1t), subject to the capacity constraint

q1t + q2t ≤ kt . Provided the optimal quantities q∗i (kt, θt, εt) are positive, they will satisfy the

first-order condition:

R
′

1(q
∗
1t, θ1t, ε1t) = R

′

2(kt − q∗1t, θ2t, ε2t). (10)

We also define the shadow price of capacity in period t , given available capacity, kt , as:

S(kt, θt, εt) ≡ R
′

i(q
∗
i (kt, θt, εt), θit, εit), (11)

provided q∗i (kt, θt, εt) > 0. Thus, the shadow price is the marginal revenue that the divisions

could collectively obtain from an additional unit of capacity acquired at the beginning of the

period. Clearly, S(·) is increasing in both θt and εt , but decreasing in kt .

The net present value of the firm’s expected future cash flows is given by:

Πf (b) =
∞∑
t=1

Eε [Mf (bt−1 + β · bt−2, θt, εt)− v · bt] · γt,

where the maximized contribution margin now takes the form:

Mf (kt, θt, εt) = R1(q
∗
1(kt, θt, εt), θ1t, ε1t) +R2(kt − q∗1(kt, θt, εt), θ2t, ε2t).

Using the Envelope Theorem, we obtain the following analogue of Lemma 1.

Lemma 2 When capacity is fungible, the optimal capacity levels, kot , are given by:

Eε [S(kot , θt, εt)] = c. (12)

We note that with dedicated capacity the optimal k̄oit for each division depends only on

θit . With fungible capacity, in contrast, the optimal aggregate kot depends on both θ1t and

θ2t . The proof of Lemma 2 shows that, for any given capacity level k , the expected shadow

prices are increasing over time. As a consequence, the first-best capacity levels given by

(12) are also increasing over time, which in turn implies that the non-negativity constraints

bt ≥ 0 again do not bind.
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Since the relevant information embodied in the shocks εt is assumed to be known only

to the divisional managers, and they are assumed to have symmetric information about the

attainable net-revenues, the two divisions can split the “trading surplus” of Mf (kt, θt, εt)−∑2
i=1Ri(kit, θit, εit) between them. Let δ ∈ [0, 1] denote the fraction of the total surplus

that accrues to Division 1. Thus, the parameter δ measures the relative bargaining power of

Division 1, with the case of δ = 1
2

corresponding to the familiar Nash bargaining outcome.

The negotiated adjustment in the transfer payment, ∆TP is then given by:

R1(q
∗
1(kt, θt, εt), θ1t, ε1t) + ∆TP = R1(k1t, θ1t, ε1t) + δ ·

[
Mf (kt, θt, εt)−

2∑
i=1

Ri(kit, θit, εit)

]
.

At the same time, Division 2 obtains:

R2(kt−q∗1(kt, θt, εt), θ2t, ε2t)−∆TP = R2(k2t, θ2t, ε2t)+(1−δ)·

[
Mf (kt, θt, εt)−

2∑
i=1

Ri(kit, θit, εit)

]
.

These payoffs ignore the transfer payment c · k2t that Division 2 makes at the beginning

of the period, as these payoffs are viewed as sunk at the negotiation stage. The total transfer

payment made by Division 2 in return for the ex-post efficient quantity q∗2(kt, θt, εt) is then

given c · k2t + ∆TP . Clearly, ∆TP > 0 if and only if q∗2(kt, θt, εt) > k2t . We refer to the

resulting “hybrid” transfer pricing mechanism as adjustable full cost transfer pricing.

At first glance, the possibility of reallocating the initial capacity rights appears to be

an effective mechanism for capturing the trading gains that arise from random fluctuations

in the divisional revenues. However, the following result shows that the prospect of such

negotiations compromises the divisions’ long-term incentives.

Proposition 2 When capacity is fungible, adjustable full cost transfer pricing fails to achieve

strong goal congruence.

The proof of Proposition 2 shows that, for some performance measure weights ut , there is

no (subgame perfect) equilibrium which results in efficient capacity investments. In particu-

lar, the proof identifies a dynamic holdup problem that results when the downstream division

drives up its capacity demand opportunistically in an early period in order to acquire some

of the resulting excess capacity in later periods through negotiation. Doing so is generally a
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cheaper for the downstream division than securing capacity upfront at the transfer price c .

Such a strategy will be particularly profitable for the downstream division if the performance

measure weights u2t are such that the downstream division assigns more weight to the later

periods.

It should be noted that the dynamic holdup problem can emerge only if the downstream

division anticipates negotiation over actual capacity usage in subsequent periods. In the

dedicated capacity scenario examined above, the downstream division could not possibly

gain by driving up capacity strategically because it cannot appropriate any excess capacity

through negotiation. The essence of the dynamic holdup problem is that the downstream

division has the power to force long-term asset commitments without being accountable

in the long-term. That power becomes detrimental if the downstream division anticipates

future negotiations over actual capacity usage.

4 Centralized Capacity Ownership

One alternative to the divisional structure examined in the previous section is to centralize

capacity ownership at the corporate level. In the context of our model, both divisions would

then effectively become profit centers that can secure capacity rights from a central office

on a period-by-period basis. The central office owns the assets and in each period acquires

sufficient capacity so as to fulfill the divisional requests made at the beginning of that period.

The downstream division will no longer be able to “hold-up” the upstream division, since

the latter is no longer the residual claimant of capacity rights.

4.1 Cost-Based Transfer Pricing

We begin with cost-based transfer prices which allow the divisions to rent capacity from the

central office at the full cost transfer price c . Since this price is the historical cost of capacity

under the relative practical capacity depreciation rule, the central unit will show a residual

income of zero in each period, provided the divisions do not “game” the system by forcing

the central office to acquire excess capacity,

To investigate the divisional incentives, we first retain the sequential decision structure

in which the downstream division communicates its capacity requirements to the upstream
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division, which then secures enough capacity rights from the central office to meet the needs

of both divisions.21 Suppose the initial capacity choices leave Division i with kit units of

capacity in period t . After the two managers have observed the realization of the period t

demand shock εt , they will again divide the total capacity kt so as to maximize the sum of

revenues for the two divisions. The effective net-revenue to Division i then becomes:

R∗1(k1t, k2t|θt, εt) = (1− δ) ·R1(k1t, θ1t, ε1t) + δ · [Mf (kt, θt, εt)−R2(k2t, θ2t, ε2t)] .

and

R∗2(k1t, k2t|θt, εt) = δ ·R2(k2t, θ2t, ε2t) + (1− δ) · [Mf (kt, θt, εt)−R1(k1t, θ1t, ε1t)] .

Taking division 2’s capacity request k2t as given, manager 1 will choose k1t to maximize:

Eε [R∗1(k1t, k2t|θt, εt)]− c · k1t.

Anticipating Division 1’s response k∗1t(k2t), Division 2 has the first-mover advantage and

chooses k2t to maximize:

Eεt [R∗2(k∗1t(k2t), k2t|θt, εt)]− c · k2t.

It is useful to observe that in the extreme case where Division 1 extracts the entire negotiation

surplus (δ = 1), Division 1’s objective simplifies to Eε[Mf (kt, θt, εt)] − c · (kt − k2t). As a

consequence, Division 1 would fully internalize the firm’s objective and choose the efficient

capacity level kot . Similarly, in the other corner case of δ = 0, Division 2 would internalize

the firm’s objective and choose its demand k2t such that Division 1 responds with the efficient

capacity level kot . For any δ ∈ (0, 1), Division 1’s (expected) marginal revenue of acquiring

another unit of capacity is:

Eε

[
∂

∂k1t

R∗1(k1t, k2t|θt, εt)
]

= Eε

[
(1− δ) ·R′1(k1t, θ1t, ε1t) + δ · S(k1t + k2t, θt, εt)

]
. (13)

It turns out that k1t = 0 cannot be part of a Nash equilibrium (see the proof of Lemma 3).

Consequently, the constraint k1t ≥ 0 will not bind in equilibrium and Division 1’s optimal

response k∗1t satisfies the following first-order condition:

21We contrast alternative sequencing arrangements, i.e., sequential versus simultaneous capacity requests,
at the end of this section.
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Eεt

[
(1− δ) ·R′1(k∗1t, θ1t, ε1t) + δ · S(k∗1t + k2t, θt, εt)

]
= c. (14)

Since R
′
1(·) and S(·) are decreasing functions of k1t , Division 1’s objective function is

globally concave and therefore there is a unique best response k∗1t , given as the solution to

equation (14).

Lemma 3 For δ ∈ (0, 1), Division 1’s response function, k∗1t(k2t), satisfies: −1 <
∂k∗1t

∂k2t
< 0.

Lemma 3 implies that the total capacity stock, kt = k∗1t(k2t)+k2t , chosen by the upstream

division in period t satisfies 0 < ∂kt

∂k2t
< 1. For each additional unit of capacity secured

upfront by the downstream division, Division 1 will increase the total capacity by less than

a unit. Division 2’s optimal choice k∗2t satisfies the first-order condition:

Eεt

[
δ ·R′2 (k∗2t, θ2t, ε2t) + (1− δ) · S(k∗t , θt, εt) +

∂k∗1t
∂k2t

{S(k∗t , θt, εt)− c}
]

= c, (15)

where k∗t ≡ k∗2t + k∗2t(k
∗
1t).

It is instructive to interpret the marginal revenues that each division obtains from securing

capacity for itself at the beginning of period t . The second term on the left-hand side of both

(14) and (15) represents the firm’s aggregate and optimized marginal revenue, given by the

(expected) shadow price of capacity. Since the divisions individually only receive a share of

the aggregate return (given by δ and 1− δ , respectively), this part of the investment return

entails a “classical” holdup problem.22 Yet, the divisions also derive autonomous value from

the capacity available to them, even if the overall capacity were not to be reallocated ex-

post. The corresponding marginal revenues are given by the first terms on the left-hand

side of equations (14) and (15), respectively. The overall incentives to acquire capacity

therefore stem both from the unilateral “stand-alone” use of capacity as well as the prospect

of trading capacity with the other division.23 For the downstream division, the marginal

22Earlier papers on transfer pricing that have examined this hold-up effect include Edlin and Reichelstein
(1995), Baldenius et al. (1999), Anctil and Dutta (1999), Wielenberg (2000) and Pfeiffer et al. (2007).

23A similar convex combination of investment returns arises in the analysis of Edlin and Reichelstein
(1995), where the parties sign a fixed quantity contract to trade some good at a later date. While the initial
contract will almost always be renegotiated, its significance is to provide the divisions with a status-quo
return on their relationship-specific investments.
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revenue identified in (15) includes a third term, which simply reflects its first-mover (i.e.,

Stackelberg leader) status.

The structure of the marginal revenues in (14) and (15) also highlights the importance of

giving Division 2 the option of securing capacity rights. Without this option, the firm would

face an underinvestment problem. To see this, note that if only Division 1 were to acquire

capacity from the center, its marginal revenue at the efficient capacity level kot would be:

Eε

[
(1− δ) ·R′1(kot , θ1t, ε1t) + δ · S(kot , θt, εt)

]
. (16)

Yet, this marginal revenue is less than c because:

Eε [S(kot , θt, εt)] = Eε

[
R
′

1(q
∗
1(kot , θ, εt), θ1t, ε1t)

]
= c, (17)

and Eε
[
R
′
1(q
∗
1(kot , θ, εt), θ1t, ε1t)

]
> Eε

[
R
′
1(k

o
t , θ, εt), θ1t, ε1t)

]
. Thus the upstream division

would have insufficient incentives to secure the firm-wide optimal capacity level on its own.

This observation speaks directly to our finding in Proposition 2. Although the dynamic

hold-up problem of “strategic” excess capacity could be effectively addressed by prohibiting

the downstream division from secure capacity rights on its own, such an approach would

also induce the upstream division to underinvest as it would anticipate being held up on its

investment in the ensuing negotiation.

We next characterize the efficient capacity level kot in the fungible capacity scenario in

relation to the efficient capacity level, k̄ot ≡ k̄o1t + k̄o2t , that two stand-alone divisions should

acquire in the dedicated capacity setting. To that end, it will be useful to make the following

assumption regarding the divisional revenue functions:

Assumption (A1): The marginal revenue functions, R
′
i(·, εit), are linear in εit .

A sufficient condition for this linearity condition to hold is that the revenue functions are

multiplicatively separable; i.e., Ri(qit, θit, εit) = εit · R̂i(qit, θit).
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Proposition 3 Given A1, the optimal capacity level kot in period t satisfies:

kot

{
≥ k̄ot if S(kt, θt, εt) is convex in εt
≤ k̄ot if S(kt, θt, εt) is concave in εt.

(18)

According to Proposition 3, the curvature of the shadow price determines whether a risk-

neutral central decision maker would effectively be risk-seeking or risk-averse with respect to

the residual uncertainty associated with the stochastic shock εt . Relative to the benchmark

setting of dedicated capacity, in which capacity reallocations are (by definition) impossible,

a shadow price function, S(·), that is convex in εt makes the volatility inherent in εt more

valuable to a risk-neutral decision maker. The central decision maker would therefore be

willing to invest a larger amount in capacity. The reverse holds when the shadow price

is concave. An immediate consequence of Proposition 3 is that when the shadow price is

linear in εt , the optimal capacity level is precisely the same as in the scenario of dedicated

capacity.24 We point out in passing that assumption A1 does not imply the linearity of S(·)
in εt , because εt enters S(·) not only directly but also via the ex-post efficient capacity

allocation, q∗i (kt, θt, εt).

The curvature of the shadow price functions hinges (unfortunately) on the third deriva-

tives of the net-revenue functions. All three scenarios identified in Proposition 3 can arise for

standard functional forms. For instance, it is readily checked that if Ri(q, θit, εit) = εit·θit·
√
q ,

then the shadow price is a convex function of εt , and therefore k0
t > k̄0

t . On the other hand,

S(·, ·, εt) is concave when Ri(q, θit, εit) = εit ·θit ·(1−e−q). Examples of revenue functions that

yield linear shadow prices, and hence kot = k̄ot for each t , include: (i) Ri(q, θit, εit) = εit·θit·ln q
and (ii) Ri(q, θit, εit) = q · [εit · θit− hi · q] . It should be noted that all of the above examples

satisfy assumption A1, and yet S(·) is generally not a linear function of εt .

With centralized capacity ownership, the T-period game becomes intertemporally sep-

arable for the divisions since their moves in any given period have no payoff consequences

in future periods. Given this intertemporal separability, any collection of Nash equilibria in

the T “stage game” would also constitute a subgame perfect equilibrium for the T -period

game. The following result identifies a necessary and sufficient condition for a stage game

equilibrium to result in efficient capacity levels under adjustable full cost transfer pricing

24In particular, when S(·) is linear in εt , we have ko
t (θ1t, θ2t) = k̄o

1t(θ1t) + k̄o
2t(θ2t).
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policy.

Lemma 4 Given A1, suppose capacity is fungible and capacity ownership is centralized.

Adjustable full cost transfer pricing then achieves strong goal congruence if and only if the

divisions respectively secure the following capacity levels:

k1t = k̄o1t and k2t = kot − k̄o1t.

Because of the sequential decision structure, goal congruence can be obtained only if the

upstream division, in its role as the Stackelberg follower, secures precisely the same amount

of capacity level as it would in the stand-alone scenario of dedicated capacity. In contrast,

Division 2, as the Stackelberg leader, must have an incentive to secure the capacity level

k2t = k̄o2t + [kot − k̄ot ] ; i.e., it must make up for any difference between kot and k̄ot .

When the shadow price S(kt, θt, εt) is linear in εt , it is readily seen that the stand-alone

capacity levels (k̄o1t, k̄
o
2t) are a solution to the divisional first-order conditions in (14) and

(15). These choices are in fact the unique Nash equilibrium; i.e., (k̄o1t, k̄
o
2t) is the unique

maximizer of the divisional objective functions.

Proposition 4 Given A1, suppose capacity is fungible and capacity ownership is centralized.

Adjustable full cost transfer pricing then achieves strong goal congruence provided the shadow

price S(kt, θt, εt) is linear in εt .

Linearity of the shadow price S(·) in εt implies that the level of investment that is

desirable from an ex-ante perspective is the same as in the dedicated capacity setting. This

parity holds despite the fact that the expected profit of the integrated firm is higher than the

sum of expected profits of two stand-alone divisions. From the divisional return perspective,

the δ and (1−δ) expressions in (14) and (15) are exactly the same at the stand-alone capacity

levels (k̄o1t and k̄o2t). We recall that the shadow price will indeed satisfy the linearity condition

identified in Proposition 4 provided the divisional revenue functions can be described by a

quadratic function of the form:

Ri(q, θit, εit) = εit · θit · q − hit · q2 (19)
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for some constants hit > 0.25 The quadratic form in (19) might serve as a reasonable

approximation of the “true” revenue functions. Although our model presumes that the

functions Ri(·) are known precisely, it might be unrealistic to expect that managers have such

detailed information in most real world contexts. To that end, a second-order polynomial

approximation of the form in (19) might prove adequate. We conclude that an internal pricing

system which allows the divisions to rent capacity at full, historical cost achieves effective

coordination, subject to the qualification that the divisional revenues can be approximated

“sufficiently well” by quadratic revenue functions.26

Propositions 3 and 4 strongly suggest that if the shadow price function S(·) is not linear

in εt , adjustable full cost transfer pricing will no longer result in efficient capacity investments

because of a coordination failure in the divisional capacity requests. The following result

characterizes the directional bias of the resulting capacity levels.

Proposition 5 Given A1, suppose capacity is fungible and capacity ownership is central-

ized. Adjustable full cost transfer pricing results in over-investment (under-investment) if

the shadow price S(kt, θt, εt) is concave (convex) in εt .

Transfers at cost lead each division to properly internalize the incremental cost of capac-

ity. However, as noted above, the divisional investment incentives are essentially a convex

combination of two forces: the benefits of capacity that a division receives on its own and the

optimized revenue that the two divisions can attain jointly by reallocating capacity. When

kot > k̄ot (because the shadow price is convex in εt ), the efficient capacity level kot cannot

emerge in equilibrium. The marginal benefit that the downstream division receives from the

autonomous use of its capacity is not sufficiently large at the quantity kot − k̄o1t since:

Eε

[
R
′

2(k
o
t − k̄o1t, θ2t, ε2t)

]
< Eε

[
R
′

2(k̄
o
2t, θ2t, ε2t)

]
= c.

Yet as shown in Lemma 4, it must be the downstream division, in its role as Stackelberg

leader, that must have an incentive to secure the additional capacity that is desired with a

convex shadow price.

25While linearity of the shadow price S(·) in εt is certainly a non-generic case, we note that functional
forms other than a quadratic yield the same conclusion; e. g., Ri(q, θit, εit) = εit · θit · ln q .

26This result will also hold if each division has private information regarding θit . The choice of k̄o
it(θit)

then forms a Bayesian equilibrium in each period, provided the parties anticipate to negotiate the ultimate
capacity usage with symmetric and complete information, i.e., (θt, εt) will be known to both parties.
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To counteract the bias identified in Proposition 5, one would expect that an appropriately

chosen mark-up (or discount) to the unit cost of capacity c could restore goal congruence.

To that end, suppose that the central capacity provider charges the divisions a transfer price

of TP = (1 + m) · c . We interpret m > 0 as a mark-up, while m < 0 would constitute a

discount from full cost.

Corollary 1 Given A1, suppose the shadow price S(kt, θt, εt) is concave (convex) in εt .

If capacity is fungible and capacity ownership is centralized, adjustable cost-based transfer

pricing can achieve goal congruence only if the transfer price includes a mark-up on (discount

from) the full cost of capacity.

Transfer pricing surveys indicate that cost-plus transfer prices are widely used in prac-

tice. Some authors have suggested that this policy reflects fairness considerations in the sense

that both profit centers should view a transaction as profitable (Eccles,1985, and Eccles and

White, 1988). In contrast, our result here points to mark-ups as an essential tool for cor-

recting the bias resulting from the fact that neither division fully internalizes the externality

associated with uncertain returns from capacity investments. From the perspective of the

firm’s central office, a major obstacle of course, is that the optimal mark-up depends on the

information variables, θt , which reside with the divisional managers.

To conclude this subsection, we demonstrate that our findings in this section are not

sensitive to the sequential decision structure in which the downstream division is given

a first-mover advantage. This sequence was natural when Division 1 was an investment

center with ultimate responsibility for acquiring and maintaining new capacity. Suppose

now that the central office instructs the two divisions to announce their desired capacity

levels simultaneously. Subsequently, the central office installs the necessary amount of new

capacity so as to meet the announced demands of the two divisions. For this alternative

game form, the capacity investments will reflect the corresponding Cournot equilibrium,

rather than the Stackelberg equilibrium identified in the preceding propositions.

Corollary 2 Proposition 4 and 5 continue to hold if the divisions secure their capacity rights

simultaneously rather than sequentially.

The proof of this claim mirrors that of Propositions 4 and 5. The only substantive
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difference is that the last term on the left-hand side of (15) disappears when the parties

make simultaneous rather than sequential moves.

4.2 Negotiated Transfer Pricing

The conclusion of the previous subsection is that even if the firm implements a system

of intertemporal cost charges that reflect the competitive rental prices of capacity, such a

cost-based system will generally not lead to efficient coordination in the divisional capacity

choices. In this section, we examine the possibility of improved coordination by appointing

the upstream division a “gatekeeper” who must approve capacity rights secured by the other

division.

Suppose that instead of having the right to secure capacity unilaterally for the current

period, the downstream division can now only do so through a mutually acceptable negotia-

tion with the upstream division. If the two divisions reach an upfront agreement, it specifies

Division 2’s capacity rights k2t and a corresponding transfer payment TPt that it must make

to Division 1 for obtaining these rights. The parties report the outcome of this agreement

(k2t, TPt) to the central office, which commits to honor it as the status quo point in any

subsequent renegotiations. Division 1 then secures enough capacity from the central office

to meet its own capacity needs as well as fulfill its obligation to the downstream division. As

before, Division 1 is charged the historical full cost of capacity under the Relative Practical

Capacity depreciation rule (i.e., c) for each unit of capacity that it acquires from the central

owner.

If the parties fail to reach a mutually acceptable agreement, the downstream division

would have no claim on capacity in that period. The upstream division would then secure

capacity for its own use at the price of c per unit.27

To summarize, we refer to the following decision rules as negotiated transfer pricing :

• Division 2 can secure capacity rights, k2t , for period t through negotiation with Di-

vision 1. The parties report the outcome of this negotiation (k2t, TPt) to the central

office.

27As argued in the previous subsection, in the absence of an upfront agreement, the upstream division
would under-invest because it anticipates a hold-up on its investment.
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• Without an upfront agreement, Division 2 would have no claim on capacity.

• Division 1 is in charge of securing capacity for both divisions. Division 1 is charged

the full cost c for capacity.

• In response to new information, division managers are free to renegotiate Division 2’s

initial capacity assignment with a corresponding transfer payment.

Since ownership of the capacity assets is again centralized, the divisional capacity choice

problems are again separable across time periods. Therefore, a system of negotiated transfer

pricing will attain our strong goal congruence requirement if it induces the two divisions to

acquire collectively the capacity level kot in each period.

Proposition 6 Suppose capacity is fungible and capacity ownership is centralized. Negoti-

ated transfer pricing then achieves strong goal congruence.

The proof of Proposition 6 demonstrates that in order to maximize their joint expected

surplus, the divisions will agree on a particular amount of capacity level k2t that the down-

stream can claim for itself in any subsequent renegotiation. Thereafter the upstream division

has an incentive to acquire the optimal amount of capacity kot for period t .28 By taking

away Division 2’s unilateral right to rent capacity at some transfer price, the central office

will generally make Division 2 worse off. We note, however, that this specification of the

default point for the initial negotiation is of no importance for the efficiency of a negotiated

capacity management system. The same capacity level, albeit with a different transfer pay-

ment, would result if the central office stipulated that in the absence of an agreement at the

initial stage of period t , Division 2 could unilaterally rent capacity at some transfer price pt

(for instance, pt = c).

Our finding that a two-stage negotiation allows the divisions to achieve an efficient out-

come is broadly consistent with the results in Edlin and Reichelstein (1995) and Wielenberg

(2000). The main difference is that in the present setting the divisions bargain over the

downstream division’s unilateral capacity rights. As observed above, the upstream division

would acquire too little capacity from a firm-wide perspective, if the downstream division

28We note that the separability condition A1 is of no importance in establishing the claim in proposition
6.
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could not stake an initial capacity claim. On the other hand, Proposition 5 demonstrated

that simply giving the downstream division the right to acquire capacity at the relevant cost,

c , could result in either over- or under-investment. By appointing Division 1 a gatekeeper

for Division 2’s unilateral capacity claims, the firm effectively balances the divisional rights

and responsibilities so as to obtain goal congruence.

To conclude this subsection we note that our analysis has focused on the upstream divi-

sion as an effective gatekeeper essentially because this division was assumed to have unique

technological expertise in installing and maintaining production capacity. Yet, the preceding

analysis makes clear that our conclusion also applies to a more symmetric setting. Suppose

each divisions individually relies on production capacity that is fungible. The firm would

then achieve effective coordination by appointing one of the divisions as a gatekeeper: re-

quests for capacity must be routed through the gatekeeper which authorizes all capacity

acquisitions and charges the other division a transfer price that is mutually acceptable to

both parties.

5 Extensions

This section seeks to demonstrate that the findings of this paper are robust to several vari-

ations of the base model examined in the preceding sections. As pointed out above, our

specification that assets have a useful life of two periods was made entirely for reasons of

notational convenience. Suppose now that assets have a useful life of n periods. For an in-

vestment undertaken at date t , the practical capacity available at date t+i , 1 ≤ i ≤ n is βi ,

with βi ≤ 1. Provided the capacity levels are (weakly) decreasing over time i.e., βi ≥ βi+1 ,

Rogerson (2008) has shown that the marginal cost of obtaining one unit of capacity for one

period is given by:

c =
v∑n

i=1 γ
i · βi

. (20)

This characterization of the competitive rental price of capacity obviously extends the for-

mula given in Lemma 1, where it was assumed that n = 2. It is clear that all of our results

in the previous sections would remain intact once the marginal cost in the two period setting

is replaced with its n-period counterpart in (20). As one would expect, the marginal cost c
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in (20) is monotone decreasing in the useful life of the asset, n , and in each of the persistence

parameters βi .

In many industry contexts, it is plausible that the acquisition cost of new capacity assents

changes over time, possibly because of technological progress. Accordingly, suppose that the

cost of acquiring one unit of capacity at date t is c · αt . A scenario of α ≤ 1 would reflect

that it over time it becomes cheaper for the firm to replace its capacity assets. Rogerson

(2008) shows that in this scenario of geometrically declining capacity costs the marginal cost

of one unit of capacity available at date t is:

ct =
v · αt∑n

i=1(α · γ)i · βi
.

As before, there exists a unique depreciation schedule and a corresponding historical cost

charges which impute a total cost of ct per unit of capacity made available at date t .

Adopting the notation introduced in Section 3, let zt−i,t denote the historical cost charge at

date t per dollar of capacity investment undertaken at date t− i . In order for the full cost of

capacity (depreciation plus imputed interest) to be equal to ct , the modified historical cost

charges must satisfy:

zt−i,t = ct · βi.

Clearly, this characterization reduces to our earlier finding in (9), if α = 1, n = 2 and

β1 = 1. For the case n = 2, it is instructive to consider the modified depreciation charge d ,

which now amounts to:

d =
1

γ + γ2 · β · α
− r. (21)

Direct comparison with (8) shows that the impact of technological progress (α ≤ 1) is

that capacity assets should now be written off in a more accelerated fashion, i.e., a higher

depreciation percentage in the first period. This change reflects that assets become economi-

cally obsolete faster when it is cheaper to replace them with new assets in future periods. To

summarize, our results extend seamlessly to a scenario where asset acquisition costs change

over time provided the divisions are charged the full cost of capacity ct , either directly via
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the transfer price, or, if the upstream division is an investment center, via the modified

depreciation schedule in (21).

Our goal congruence framework has abstracted from managerial incentive problems re-

lated to moral hazard. One possible approach to incorporating actions that are personally

costly to managers is to let the divisional cash flows in each period also be functions of

unobservable managerial effort. In the context of a one-period model, Edlin and Reichel-

stein (1995) identify separability conditions which imply that goal congruent performance

measures can also serve as the basis of optimal second-best contracts. Essential to this ar-

gument is that the capacity investments are not a source of additional contracting frictions

and therefore the optimal second-best incentive scheme does not need to balance a trade-

off between productive efficiency and higher managerial compensation. In contrast, in the

models of Christensen et al. (2002), Dutta and Reichelstein (2002) and Baldenius et al.

(2007) the investment decisions are a source of informational rent for the manager, and as

a consequence, optimality require a departure from the first-best investment levels. In these

papers, the second- best policy entails lower investment levels which can be induced through

a suitable increase in the “hurdle rate”, that is, the capital charge rate applied to the book

value of assets.

6 Conclusion

The acquisition and subsequent utilization of capacity poses challenging incentive and coordi-

nation problems for multidivisional firms. Our model has examined the incentive properties

of two different responsibility center arrangements. A decentralized ownership structure

views the supplier of capacity services (the upstream division) as an investment center that

is responsible for the acquisition of new capacity assets. In contrast, the downstream divi-

sion rents capacity at a transfer price based on the historical cost of capacity, which includes

depreciation and imputed interest charges. A suitable depreciation schedule for capacity

investment expenditures ensures that both divisions internalize the firm’s marginal cost of

capacity. Transfer prices set at the full historical cost of capacity then lead the divisional

managers to choose capacity levels that are efficient from the firm-wide perspective, provided

capacity is dedicated, that is, the divisional capacity assignments are fixed in the short run.
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If the production processes of the two divisions have enough commonalities so that ca-

pacity becomes fungible in the short run, it is essential to give divisional managers discretion

to negotiate a reallocation of the aggregate capacity available. This flexibility allows the firm

to optimize the usage of aggregate capacity in response to fluctuations in the divisional rev-

enues. Yet our analysis shows that the corresponding system of adjustable full cost transfer

pricing can cause a dynamic hold-up problem in which the downstream division drives up its

capacity demands opportunistically. It does so in anticipation of obtaining the corresponding

excess capacity at a lower cost through negotiations in future periods.

The dynamic hold-up problem can be addressed by centralizing capacity ownership. Both

divisions are then structured as profit centers that secure capacity from a central office

on a period-by-period basis. However, even when these cost based transfer prices reflect

the competitive rental price of capacity, the firm generally faces a remaining coordination

problem. Making their capacity choices individually, the divisional managers generally do not

internalize the firm-wide benefits of additional capacity acquisitions. A negotiated capacity

management in which the downstream division no longer secures capacity rights unilaterally

but through negotiations with the upstream division can solve this coordination problem.

The upstream division then becomes effectively a gatekeeper for all new capacity investments.

One implication of our analysis is that even if neither division has a technological advantage

in providing capacity services, there would be coordination advantages to assigning the

ultimate authority for new capacity acquisitions to a single gatekeeper.

Our analysis leaves open the possibility of other organizational solutions to the dynamic

holdup and coordination problems. For instance, since the essence of the dynamic holdup

problem is that the downstream division is not held accountable for the long-term effects

of irreversible capacity investments, a natural response would be to structure both divisions

as investment centers, even though the physical control over capacity assets rests with the

upstream division. Rather than renting capacity on a period-by-period basis, the downstream

division would now be required to carry “its share” of past capacity acquisitions on its balance

sheet with a corresponding set of depreciation and capital charges. It would be instructive

to assess the efficiency of such a responsibility center structure in future research.
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Appendix

Proof of Lemma 1 We first show that for any sequence of capacity investments b =

(b0, b1, b2 . . . ), with bt ≥ 0:
∞∑
t=0

v · bt · γt =
∞∑
t=1

c · kt · γt

where kt = bt−1 + β · bt−2 . Since k0 = 0, we can write

∞∑
t=0

v · bt · γt =

v · [k1 + γ[k2 − β · k1] + γ2[k3 − β[k2 − β · k1] + γ3[k4 − β[k3 − β · [k2 − β · k1]]] + . . .

This expression is linear in each ki and the coefficient on k1 is:

v
[
1− γβ + γ2 · β2 − γ3 · β3 + γ4 · β4 . . .

]
= v

[
∞∑
i=0

(γ · β)2i −
∞∑
i=0

(γ · β)2i+1

]

= v ·
∞∑
i=0

(γ · β)2i[1− γ · β]

= v · 1

1 + γ · β
.

Similarly, the coefficient on kt is

v · 1

1 + γ · β
· γt−1 = c · γt.

In terms of future capacity levels, the firm’s discounted future cash outflows can therefore

be expressed as:
∞∑
t=1

Eεt [Md(θt, εt, kt)− c · kt] · γt.

This problem is intertemporally separable and the optimal k̄ot are given by k̄ot = k̄o1t + k̄o2t ,

where k̄oit satisfies the first order conditions:

Eεi [R
′

i(k̄
o
it, θit, εit)] = c

The monotonicity condition in (2) ensures that the optimal k̄oit are weakly increasing over

time. Therefore the non-negativity constraints bt ≥ 0 do not bind. 2
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Proof of Proposition 1:

Using backward induction, consider the decision made by the downstream division in the

last period. Independent of the current capacity stock and past decisions, its objective is to

maximize:

Eε2 [R2(k2T , θ2T , ε2T )]− c · k2T . (22)

Let k̄o2T (θ2T ) denote the maximizer of (22). Division 1 faces the constrained optimization

problem:

Eε1 [R1(k1T , θ1T , ε1T )]− c · k1T (23)

subject to:

k1T + k̄o2T (θ2T ) ≥ β · bT−2.

Since Division 1’s objective function in (23) is concave, it follows that the optimal capacity

level installed at date T − 1 is:

k∗T = max{k̄o1T (θ1T ) + k̄o2T (θ2T ), β · bT−2},

where k̄o1T (θ1T ) is the unconstrained maximizer of (23). In particular, the upstream division

would invest bT = 0 if k∗T = β · bT−2 .

In a subgame perfect equilibrium, Division 2 must select its capacity choice in period

T − 1 according to k̄o2,T−1(θ2,T−1), irrespective of past decisions. In response, Division 1 will

install a capacity level:

k∗T−1 = max{k̄o1,T−1(θ1,T−1) + k̄o2,T−1(θ2,T−1), β · bT−3}.

Proceeding inductively, we conclude that in any period, the downstream division will

rent the myopically optimal quantity k̄o2t(θ2t). In response, the upstream division cannot

do better than to select the capacity level k∗t in period t . The assumption that marginal

revenues are increasing for each division ensures that

k̄o1,t+1(θ1,t+1) + k̄o2,t+1(θ2,t+1) ≥ k̄o1t(θ1t) + k̄o2t(θ2t).

As a consequence, the non-negativity constraint on new investments will not bind and:

k∗t = k̄o1t(θ1t) + k̄o2t(θ2t) ≡ k̄ot .
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2

Proof of Proposition 2:

Let T = 2 and suppose that the random shocks εt assume their expected value ε̄ for

sure. Furthermore, suppose that the divisional revenue functions are identical both cross-

sectionally and intertemporally; that is, θit = θ for each i ∈ {1, 2} and each t ∈ {1, 2} .
Let k ≡ k̄ot denote the efficient capacity level for each division. Thus, R

′
i(k, θ, ε̄) = c . For

simplicity, we also set the decay factor β equal to 1. Absent any growth in revenues and

absent any decay in capacity, the optimal investment levels are b0 = 2 · k and b1 = 0,

respectively. To show that there is no sub-game perfect equilibrium which results in efficient

capacity investments for some weights ut , suppose the downstream division has the entire

bargaining power at the negotiation stage; that is, δ = 0.29

Step 1: For any b0 ≥ 2 ·k , Division 2 will secure k22 = 0 in the second period and Division

will set b1 = 0.

At the beginning of the second period, Division 1 will choose b1 so as to maximize:

R1(b0 − k22 + b1, θ, ε̄)− c · b1,

subject to the constraints b1 ≥ 0 and b0 − k22 + b1 ≥ 0. We note that the charges cor-

responding to b0 are sunk costs. Division 2’s second period capacity demand induces the

following optimal response from Division 1:

b1(k22, b0) =

{
0 if k22 ≤ b0 − k

k22 + k − b0 if k22 ≥ b0 − k.
(24)

Anticipating this response, Division 2’ second-period profit is given by:

Γ(k22, θ, ε̄) = Mf (b0, θ, ε̄)−R1(b0 − k22, θ, ε̄)− c · k22.

for any k22 ≤ b0−k . Thus, we find that Γ
′
(k22, θ, ε̄) = R

′
1(b0−k22, θ, ε̄)−c ≤ R

′
1(k, θ, ε̄)−c < 0

for all k22 ≤ b0 − k .

For any k22 ≥ b0 − k the downstream division’s payoff is:

29This specification does simplify the algebra considerably, yet as will become clear below, is in no way
essential for the following argument.
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Γ(k22, θ, ε̄) = Mf (k + k22, θ, ε̄)−R1(k, θ, ε̄)− c · k22.

Since by definition S(k22 + k, θ, ε̄) ≤ c , it follows that Γ
′
(k22, θ, ε̄) < S(k22 + k, θ, ε̄)− c < 0.

This completes the proof of Step 1.

Step 2: For any b0 ≥ 2 · k , Division 2’s second period profit is increasing in b0

From Step 1 we know that neither division will obtain additional capacity rights if b0 ≥ 2 ·k .

As a consequence, Division 2’s profit becomes

Γ(0, b0, θ, ε̄) = Mf (b0, θ, ε̄)−R1(b0, θ, ε̄).

That expression is increasing in b0 because

∂

∂b0
Γ(0, b0, θ, ε̄) = R

′

1(q
∗
1(b0, θ, ε̄), θ, ε̄)−R

′

1(b0, θ, ε̄) > 0,

as q∗2(b0, θ, ε̄) > 0. We conclude that Division 2 has an incentive to force Division 1 to

acquire excess capacity in the first period, that is, to drive b0 beyond the efficient level 2 · k .

Division 2 can do so unilaterally by increasing k21 . Doing so is, of course, costly in period

1. Yet, it will be an optimal strategy for the downstream division provided the performance

measure weights are such that u21 is sufficiently small relative to u22 . 2

Proof of Lemma 2:

Step 1: For a given capacity level k , the expected shadow price of capacity is increasing

over time, that is:

Eε[S(k, θt+1, εt+1)] ≥ Eε[S(k, θt, εt)]. (25)

For any fixed pair (k, ε), we claim that:

S(k, θt+1, ε) ≥ S(k, θt, ε) (26)

Suppose first 0 < q∗1(k, θt+1, ε) ≤ q∗1(k, θt, ε) < k . Since R
′
1(q, θ1t, ε1t) is increasing in θ1t and

θ1,t+1 ≥ θ1t , the definition of the shadow price in (11) implies the inequality in (26). Suppose

now q∗1(k, θt+1, ε) ≥ q∗1(k, θt, ε). Since the shadow price can be expressed as:

S(k, θt, ε) = R
′

2(k − q∗1(k, θt, ε), θ2t, ε2),
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θ2,t+1 ≥ θ2t and R
′
2(q, θ2t, ε2t) is increasing in θ2t , we conclude that (26) holds. The claim

now follows because εt and εt+1 are iid .

If q∗i (k, θt, ε) = 0, a similar argument can be made, keeping in mind that S(k, θt, ε) =

R
′
j(k, θjt, εj) if q∗i (k, θt, ε) = 0.

Step 2: Proceeding exactly as in the proof of Lemma 1, the firm’s expected future cash

flows are:

∞∑
t=1

Eεt [Mf (kt, θt, εt)− c · kt] · γt.

This problem is intertemporally separable and the optimal kot satisfy the first order condi-

tions:

Eεt

[
∂

∂kt
Mf (k

o
t , θt, εt)

]
= R

′

i(q
∗
i (k

o
t , θt, ε), θit, εit) = c,

provided q∗i (k
o
t , θt, ε) > 0. By definition,

R
′

i(q
∗
i (k

o
t , θt, ε), θit, εit) = Eεt [St(k

o
t , θt, εt)] = c.

The claim therefore follows after observing that, by Step 1, the optimal capacity levels, kot

are increasing over time and, as a consequence, the non-negativity constraints bt ≥ 0 will

not be binding. 2

Proof of Lemma 3:

We first show that if k∗1t is interior, then −1 <
∂k∗1t

∂k2t
< 0. Implicitly differentiating (13)

with respect to k2t yields

∂k∗1t
∂k2t

=
−Eεt [δ · S

′
(k∗t , θt, εt)]

Eεt
[
δ · S ′(k∗t , θt, εt) + (1− δ) ·R′′1(k∗1t, θ1t, ε1t)

] ,
where S

′
(k∗t , θt, εt) ≡

∂S(k∗t ,θt,εt)

∂kt
. The result then follows because S

′
(k∗t , θt, εt) and R

′′
1(k∗1t, θ1t, ε1t)

are both negative and δ ∈ (0, 1). 2

We now establish that k1t = 0 cannot be part of an equilibrium. To the contrary, suppose

there exists a k2t such that the pair (0, k2t) is an equilibrium. Since k∗1t = 0 is Division 1’s

optimal response to k2t , we must have:

Eε [(1− δ) ·R′1(0, θ1t, ε1t) + δ · S(k2t, θt, εt)] ≤ c.
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Since R′1(0, θ1t, ε1t) < c , the above inequality implies that:

Eε[S(k2t, θt, εt)] < c, (27)

which in turn implies that k2t > kot .

Let Γ denote Division 2’s marginal revenue at k1t = 0; i.e.,

Γ ≡ Eε

[
δ ·R′2(k2t, θ2t, ε2t) + (1− δ) · S(k2t, θt, εt) +

∂k∗1t
∂k2t

· [S(k2t, θt, εt)− c]
]
.

We note that the third term of the above expression is strictly less than c−Eε[S(k2t, θt, εt)]

because of the inequality in (27) and the fact that −1 <
∂k∗1t

∂k2t
≤ 0. Consequently,

Γ < δ · Eε [R′2(k2t, θ2t, ε2t)− S(k2t, θt, εt)] + c.

The first-term on the right hand side of the above inequality is non-positive from the def-

inition of the shadow price. Therefore, Γ < c , and hence k2t > kot cannot be an optimal

strategy, which contradicts the hypothesis that (0, k2t) is an equilibrium. 2

Proof of Proposition 3: We first note that the efficient capacity level in the dedicated

capacity setting, k̄ot , can be alternatively defined by the following equation:

S(k̄ot , θt, ε̄t) = c. (28)

This holds because (i)S(k̄ot , θt, ε̄t) ≡ R
′
1(q
∗
1(k̄ot , θt, ε̄t), θ1t, ε̄1t), and (ii) q∗1(k̄ot , θt, ε̄t) = k̄o1t ,

since k̄ot = k̄o1t + k̄o2t and, given assumption A1, k̄oit satisfies:

Eεi
[
R′i(k̄

o
it, θit, εit)

]
= R′i(k̄

o
it, θit, ε̄it) = c.

The efficient capacity level in the fungible capacity setting is given by:

Eε[S(kot , θt, εt)] = c (29)

When S(·) is linear in εt , Eε[S(kot , θt, εt)] = S(kot , θt, ε̄t). Equations (28) and (29) there-

fore imply that kot = k̄ot .

If S(·) is concave in εt , the application of Jensen’s inequality yields:

Eε[S(k̄ot , θt, εt)] < S(k̄ot , θt, ε̄t) = c. (30)
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The result kot < k̄ot then follows because S(k, θt, εt) is decreasing in k . A similar argument

proves that kot > k̄ot when S(·) is convex. 2

Proof of Lemma 4:

Division 1’s optimal response, k∗t (k2t), is unique and given by the first-order condition in

(13). Therefore, Division 1 will choose the first-best capacity kot if and only if k2t satisfies:

Eε[R
′

1(k
o
t − k2t, θ1t, ε1t)] = c.

Since Eε[R
′
1(k̄

o
1t, θ1t, ε1t)] = c and R

′
1(k1, ·, ·) is decreasing in k1 , the above equation can be

satisfied if and only if kot − k2t = k̄o1t . To finish the proof, we need to show that the resulting

capacity level for Division 2 is non-negative; i.e., k2t = kot − k̄o1t ≥ 0. We note that:

c = Eε[R
′

1(k̄
o
1t, θ1t, ε1t)] = Eε[S(kot , θt, εt)] ≥ Eε[R

′

1(k
o
t , θ1t, ε1t)],

where the last inequality follows from the definition of shadow price. Since R
′
i(k, ·, ·) is

decreasing in k , it follows that kot ≥ k̄o1t . 2

Proof of Proposition 4: Proposition 3 shows that kot = k̄ot ≡ k̄o1t + k̄o2t when the shadow

price S(kt, θt, εt) is linear in εt . Consequently, it suffices to show that the adjusted full cost

transfer pricing induces division i to secure k̄oit units of capacity for each i ∈ {1, 2} . Since

R
′
i(·, ·, εit) and S(·, ·, εt) are linear in εt , it follows that:

Eεi [R
′

i(kit, θit, εit)] = R
′

i(kit, θit, ε̄it)

and

Eε[S(kt, θt, εt)] = S(kt, θt, ε̄t).

As a consequence, the divisional first-order conditions under the full cost transfer system

become:

(1− δ) ·R′1(k∗1t, θ1t, ε̄1t) + δ · S(k∗1t + k2t, θt, ε̄t) = c (31)

δ ·R′2(k∗2t, θ2t, ε̄2t) + (1− δ) · S(k∗t , θt, ε̄t) +
∂k∗1t
∂k2t

· {S(k∗t , θt, ε̄t)− c} = c. (32)
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We recall from the proof of Proposition 2 that when the shadow price S(kt, θt, εt) is linear

in εt , the efficient capacity level is given by:

S(k̄ot , θt, ε̄t) = c.

Substituting this in (31) and (32) shows that (k̄o1t, k̄
o
2t) is indeed a solution to the first-order

conditions.

Given that Division 1’s optimal response is uniquely given by k∗1t(k2t), it suffices to show

that k̄o2t is the unique maximizer of Division 2’s objective function. To prove this, we will

show that Division 2’s profit function is single-peaked, i.e., π2
′(k2t) < 0 for all k2t > k̄o2t and

π2
′(k2t) > 0 for all k2t < k̄o2t .

Case I: k2t > k̄o2t

Suppose k2t = k̄o2t+∆2 and ∆2 > 0. Let k∗1t = k̄o1t−∆1 denote division 1’s optimal response.

We note that 0 < ∆1 < ∆2 , since −1 <
∂k∗1t

∂k2t
< 0. Consequently,

k∗t (k̄
o
2t + ∆2) = k̄o1t −∆1 + k̄o2t + ∆2 = k̄ot + ∆,

where ∆ = ∆2 −∆1 > 0. Suppressing θt and εt as arguments, we can write:

π
′

2(k̄
o
2t + ∆2) = δ ·R′2(k̄o2t + ∆2) + (1− δ) · S(k̄ot + ∆) +

∂k∗1t
∂k2t

·
{
S(k̄ot + ∆)− c

}
− c. (33)

Since 0 >
∂k∗1t

∂k2t
> −1 and S(k̄ot + ∆) < S(k̄ot ) = c , it follows that:

∂k∗1t
∂k2t

·
{
S(k̄ot + ∆)− c

}
< c− S(k̄ot + ∆)

Therefore,

π
′

2(k̄
o
2t + ∆2) < δ ·

[
R
′

2(k̄
o
2 + ∆2)− S(k̄ot + ∆)

]
(34)

Ex-post efficiency requires that any given capacity stock k must be reallocated so that

R
′
1(q
∗
1(k)) = R

′
2(k − q∗1(k)). Furthermore, we note that:

R
′

1(k̄
o
1t −∆1) > R

′

1(k̄
o
1t) = c

and

R
′

2(k̄
o
2t + ∆2) < R

′

2(k̄
o
2t) = c
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Since q∗1(k̄ot ) = k̄o1t , it follows that

q∗1(k̄ot + ∆) > k̄o1t −∆1

⇔ k̄ot + ∆− q∗1(k̄ot + ∆) < k̄o2t + ∆2.

Since S(k̄ot + ∆) ≡ R
′
2(k̄

o
t + ∆− q∗1(k̄ot + ∆)), the above inequality implies that:

S(k̄ot + ∆) > R2
′(k̄o2t + ∆2).

It then follows from (34) that π
′
2(k̄

o
2t + κ2) < 0.

Case II: k2t < k̄o2t

Now suppose k2t = k̄o2t −∆2 and ∆2 > 0 and let k∗t = k̄ot + ∆, where 0 < ∆ < ∆2 . Since
∂k∗1t

∂k2t
> −1 and S(k̄ot −∆) > S(k̄ot ) = c , it follows that:

∂k∗1t
∂k2t

·
{
S(k̄ot −∆)− c

}
> c− S(k̄ot −∆)

Therefore,

π
′

2(k̄
o
2t + ∆2) > δ ·

[
R
′

2(k̄
o
2 −∆2)− S(k̄ot −∆)

]
Following the similar arguments as used in case I above, it can be shown that

R2
′(k̄o2t −∆2) > R

′

2(k̄
o
t −∆− q∗1(k̄ot −∆)) ≡ S(k̄ot −∆)

and hence π
′
2(k̄

o
2t −∆2) > 0. 2

Proof of Proposition 5:

The proof is by contradiction. Consider first the case when the shadow price S(kt, θt, εt)

is a concave function of εt , and hence kot < k̄ot . Lemma 3 shows that a cost-based system

will induce the efficient capacity level if and only if k2t = kot − k̄o1t < k̄o2t . Since k∗t (k2t) is a

monotonically increasing function, this implies that:

k∗t (k2t) > kot (35)

for all k2t ≥ k̄o2t .
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To generate the contradiction, suppose that the full cost transfer system induces under-

investment; i.e., k∗t ≤ kot . Since S(k, ·, ·) is a decreasing function, this implies that:

Eε[S(k∗t , θt, εt)] ≥ Eε[S(kot , θt, εt)] = c.

Let Eε[S(k∗t , θt, εt)] = c + ∆ for some ∆ ≥ 0. Substituting this in Division 2’s first-order

condition in (15) yields:

δ · Eε[R
′

2(k2t, θ2t, ε2t)] + (1− δ) · (c+ ∆)− ∂k∗1t
∂k2t

·∆ = c,

which implies that:

Eε[R
′

2(k2t, θ2t, ε2t)] ≤ c, (36)

because ∆ ≥ 0 and
∂k∗1t

∂k2t
< o . The inequality in (36) implies:

k2t ≥ k̄o2t,

which, combined with (35), yields k∗t > kot . This, however, contradicts the maintained

assumption that k∗t ≤ kot . A similar argument proves that transfer at full cost induces

under-investment when S(·, ·, εt) is convex in εt . 2

Proof of Corollary 1: Consider first the case when the shadow price S(kt, θt, εt) is a

concave function of εt . We wish to show that p = c · (1 +m) can induce efficient investment

only if m > 0. To the contrary, suppose m ≤ 0 induces efficient investment kot , where

kot < k̄ot by Proposition 2. Given Lemma 3, this requires that p = c · (1 + m) induces

Division 2 to choose:

k2t = kot − k̄o1t < k̄o2t. (37)

Since R
′
i(·, ·, εit) is linear, Division 2’s first-order condition, when evaluated at k∗t = kot ,

yields:

δ ·R′2(k2t, θ2t, ε̄2t) + (1− δ) · c = c · (1 +m),

which implies that:

R
′

2(k2t, θ2t, ε̄2t) ≤ c,

since m ≤ 0 by assumption. As a consequence, we get:

k2t ≥ k̄o2t,
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which contradicts (37), thereby proving the result. A similar argument proves that when

S(·, ·, εt) is convex in εt , a cost-based system can induce efficient investment only if m < 0.

2

Proof of Proposition 6: We first claim that if the two divisions reach an upfront agreement

under which Division 2 receives kot−k̄o1t units of capacity for some lump-sum transfer payment

of TPt , Division 1 will choose the efficient capacity level kot . To prove this, note that, given

k2t = kot − k̄o1t , Division 1 will choose k1t to maximize:

(1−δ)·Eε [R1(k1t, θ1t, ε1t)]+δ·Eε·
[
Mf (k

o
t + k1t − k̄o1t, θt, εt)−R2(k

o
t − k̄o1t, θ2t, ε2t)

]
−c·(kot+k1t−k̄o1t).

We note that TPt is a sunk payment, and hence irrelevant to Devision 1’s capacity deci-

sion. The above maximization problem’s first-order condition, which is necessary as well as

sufficient, yields

Eε
[
(1− δ) ·R′1(k1t, θ1t, ε1t) + δ · S(kot + k1t − k̄o1t, θt, εt)

]
= c,

which shows that Division 1 will indeed choose k1t = k̄o1t , and hence kt = kot .

To complete the proof, we need to show that there exists a transfer payment TPt such

that the ex-ante contract (kot − k̄o1t, TPt) will be preferred by both divisions to the default

point of no agreement. If the two divisions fails to reach an agreement, Division 1 will choose

its capacity level unilaterally, and Division 2 will receive no capacity rights (i.e., k2t = 0).

Let k̂t denote Division 1’s optimal choice of capacity under this “default” scenario. Division

1’s expected payoff under the default scenario is then given by:

π̂1t = Eε

[
(1− δ) ·R1(k̂t, θ1t, ε1t) + δ ·Mf (k̂t, θt, εt)

]
− c · k̂t, (38)

while Division 2’s default payoff is:

π̂2t = (1− δ) · Eε
[
Mf (k̂t, θt, εt)−R1(k̂t, θ1t, ε1t)

]
.

By agreeing to transfer kot − k̄o1t units of capacity rights to Division 2, the two divisions can

increases their ex-ante joint surplus by:

∆M ≡ Eε[Mf (k
o
t , θt, εt)− c · kot ]− Eε[Mf (k̂t, θt, εt)− c · k̂t].
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The two divisions can then split this additional surplus between them in proportion to their

relative bargaining power. The transfer price that implements this is given by:

Eε
[
(1− δ) ·R1(k̄

o
1t, θ1t, ε1t) + δ · [Mf (k

o
t , θt, εt)−R2(k

o
t − k̄o1t, θ2t, ε2t)]

]
+TPt = π̂1t+δ · .∆M,

Division 2’s expected payoff with this choice of transfer payment will be equal to π̂2t + (1−
δ) · ∆M . Therefore, both divisions will prefer the upfront contract (kot − k̄o1t, TPt) to the

default point of no agreement. 2
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